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Analysis of Design of Experiments in R  

Santosh Patil 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi - 110012. 

Email: san.santoshpatil@gmail.com 
 

R. A. Fisher introduced the term ‘Analysis of variance’. The basic purpose of the analysis of 

variance is to test homogeneity of several means 

The variation in numerical data may classified as 

• Assignable cause- i.e. known cause 

• Chance cause- i.e. error 

Variation due to assignable cause can be measured and control and whereas variation due to 

error is beyond human control. 

The increased efficiency and reduced experimental errors in experimental designs are achieved 

by THREE basic principles i.e., Replication, Randomization, and Local control 

Replication: - 

Repeated application of treatment under investigation/experiment known as Replication 

The Standard error of treatment mean is given as, 

S. E. (x̅) =
  𝑆𝑥

√𝑟
 

In general, the number of replications is chosen such that degree of freedom for error term is 

not less than 12. And minimum two replications may be used in experiment 

 

 Randomization: - 

Allocation of the treatments to experimental units in such a way that an experimental unit has 

equal chance of receiving any treatment is known as  randomization. 

Example: -   

Block 01 T2 T3 T1 T4 

Block 02 T1 T4 T2 T3 

Block 03 T4 T2 T3 T1 
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Role: 

• Randomization removes human biases (assigning the treatments randomly). 

• It introduces the independence of treatment in an experiment.  

Local control: - 

➢ Local control is a tool for maintaining greater homogeneity of experimental units within 

a block of an experiment. Local control is also called blocking. 

➢ Blocking is done perpendicular to direction of heterogeneity.  

Role: 

• Local control form homogeneous block of experimental unit. 

• It reduces the experimental error. 

• It makes the design more efficient. 

• It is also used to find the size and shape of experimental units.  

Agricultural Experiment Designs:  

Complete Block Design- are that design in which each block receives all treatment e.g. CRD, 

RBD, LSD whereas in case Incomplete Block Design each block does not receive all treatment 

e.g. BIBD, PBIBD 

 

ASSUMPTIONS OF THE ANALYSIS OF VARIANCE 

The general interpretation of the analysis of variance is valid only when certain assumptions 

are fulfilled as follows: 

• Additive Effects:   Treatment and environmental effects are additive in nature. Tukey's 

1-df Test for non-additivity. 

• Independence of errors: Experimental errors are independent in nature. A plot of the 

residuals will help to check independence of error. 

• Normal Distribution - A plot of the residuals and Shapiro-Wilk test is recommended 

to check the normality of errors.   

• Homogeneity of Variance- Experimental errors have common variance. Bartlett's and 

Levene’s test are the most widely used for testing the homogeneity of several variances. 

Failure to meet one or more of these assumptions affects the significance of the F test in the 

analysis of variance. 
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To know, mean performance of treatment how significantly different from other treatments the 

following commonly used multiple pair wise mean comparison test  

• Least significant difference (lsd) 

• Scheffe's 

• Tukey's also known as honestly significant difference test" (HSD), 

• Duncan's multiple range test  

• Dunnett's-mostly used in Treatments Vs control; 

-: Complete Randomized Design: - 

The simplest design uses two essential principles of replication and randomization. In CRD we 

allocate ‘t’ treatments completely at random to the n units, provided that i-th treatment appears 

in ri units for  i= 1,2,..... ,t.    Σ ri = n units,  

Layout: Here as the whole field is homogenous in nature, we allotted the treatments randomly 

over whole field using random number table. We can see that the treatment T1, T2, T3, T4 & 

T5 occurs 4,3,4,2 &2 times respectively. 

T2 T3 T1 T5 T3 

T1 T4 T3 T1 T2 

T3 T5 T2 T4 T1 

Linear Model of   CRD is:  Y ij =μ+ τi + εij 

 Yij: observation from i-th treatment and j-th replicates. 

 μ: true mean effect 

 τi: i-th treatment effect 

 εij:- error/ effect due to unknown factors. 

Hypothesis: - 

       H0: μ1
 = μ2 = μ3………………………..

 = μt 

            H1:  at least one treatment mean μi
  differ from others 

ANOVA sketch for completely randomized design with t Treatments, r replications 

S.V. df SS MSS F cal 

Treatment  t-1 SStrt MStrt MStrt/ MS error 

Error n-t SS error MS error  

Total n-1 SS tot   
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Merits: 

• Flexibility to have any number of treatments and replicates for each treatment. 

• Mostly used in Lab and pot experiments where experimental condition is homogenous.  

Demerits: If experiment with more number of treatments then it is difficult to maintain 

homogenous condition of experimental units. 

Randomized Block Design: - 

The mostly commonly used design in agriculture experiments which uses all three essential 

principles of DOE i.e. replication, randomization and local control. In RBD we allocate ‘t’ 

treatments completely at random to the each block separately to the n units, provided that i-th 

treatment appears in r  units for  i= 1,2,..... ,t.    n=tr  units,  

In RBD , number of blocks = number of replications 

Layout: 

Let an experiment consist of 5 treatments, allotted in 3 blocks separately without any repetition 

in particular block  

Block I T2 T3 T1 T5 T4 

Block II T1 T4 T3 T5 T2 

Block III T3 T5 T2 T4 T1 

Here experimental material between blocks is heterogeneous and within blocks homogeneous, 

allotment of the treatments randomly for each block using random number table. We can find 

that the treatment five treatments occurred each 3 times. 

Linear Model of   RBD is:  Yij =μ+ τi + βj + εij 

 Yij : observation from  i-th treatment and j-th replicates. 

 μ : true mean effect 

 τi : i-th treatment effect 

 βi : j-th block/replication effect 

 εij :- error/ effect due to unknown factors. 

Analysis in case of RBD Design: 

Hypothesis: - 

    For testing Treatment effect  

     H0 : μ1
 = μ2 = μ3………………………..

 = μt 

        H1 :  at least one treatment mean μi
  differ from others 
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For testing Block/Replication effect 

 H0 :   no difference in Block  means 

       H1 :  significant  difference in Block means 

ANOVA sketch   for randomized block design with t Treatments, r replications 

S.V. df SS MSS F cal 

Block r-1 SSblk MSblk  

Treatment  t-1 SStrt MStrt MStrt/ MS error 

Error (t-1)(r-1) SS error MS error  

Total n-1 SS tot   

 

Merits: Used where one-way heterogeneity present in experimental material  

Demerits: If number of treatments are more than it is difficult to maintain homogeneity in 

block also plot size will be reducing.  

 

FACTORIAL EXPERIMENTS 

Factorial experiments involve simultaneously more than one factor each at two or more levels. 

The experimenter finds the main effects and the interaction effects for different factors. 

Example - RCBD with a 2x4 Factorial leads to combinations – (a0b0, a0b1, a0b2, a0b3, a1b0,

 a1b1, a1b2, a1b3). These eight treatment combinations may assign to blocks 

randomly as  

Block 01 
T3 

a0b2 

T7 

a1b2 

T2 

a0b1 

T6 

a1b1 

T4 

a0b3 

T5 

a1b0 

T1 

a0b0 

T8 

a1b3 

 

Linear Model 

 Yijk = : μ + αi + βj  + (αβ)jk + γk + eijk 

 Where:    μ = Experiment mean 

        αi = Effect of ith level of factor A 

         βj = Effect of the jth level of factor B 

        γk  = Effect of the kth replicate 

        (αβ)jk = A x B interaction effect 

         eijk = Random error 
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Symmetric & Asymmetric factorial experiments- 

If each factor has the same levels, then experiment is known as symmetrical factorial 

experiment (pxp=p2). If each factor has different levels, then an experiment is known as an 

asymmetrical factorial experiment (p x q). 

ANOVA sketch of Data A x B factorial experiment. 

Source df SS MS F 

Blocks r - 1 SS(Block)   

Factor A a - 1 SSA MSA MSA / MSerr 

Factor B b - 1  SSB MSB MSB /  MSerr 

A x B (a - 1)(b - 1) SS(AxB) MS(AxB) MS(AxB) / MSerr 

Error  (r-1)(ab-1) SSerr MSerr  

Total (subplots) rab - 1 SS tot   

 

THE SPLIT-PLOT TECHNIQUE 

Definition: -The split-plot design involves assigning the levels of one factor to main plots 

and then assigning the levels of second factor to sub-plots within each main plot. The split-

plot design results from a specialized randomization scheme for a factorial experiment. 

Disadvantages of Split-plot designs 

• Because of large plot size (main plot treat) and smaller plot size (sub plot treat), both 

factors are not tested with equal precision 

• When there is more than two factors it becomes complex. 

Split-Plot layout 

A: main plot factor, 3 levels. (Spacing) 

B: subplot factor, 5 levels(variety).   With 02 replications.   

Block I 

S2 S3 S1   

Block II 

S3 S2 S1 

V2 V3 V4   V5 V4 V5 

V5 V4 V1   V1 V1 V1 

V3 V5 V5   V4 V5 V3 

V1 V2 V2   V3 V2 V2 

V4 V1 V3   V2 V3 V4 
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The linear model for the split-plot  

The linear model for the split-plot with RBD main plots is 

Yijk =  + Rk+i + ik + j + ()ij + ijk 

Where: k = 1, ..., r indexes the reps,  

  i = 1, ..., a indexes the main plot levels, and  

  j = 1, ... , b indexes the subplot levels.   

Yijk : observation 

  : mean 

 Rk  replication effect 

i : Factor A effect 

 j : Factor B effect  

 ()ij : Interaction AB effect 

ik : error associated with the main plots 

ijk error associated with the subplots.   

The variance 
 is usually larger than 

.  

Split-plot ANOVA  

Source Df SS MS F 

Blocks r – 1 SS(Block)   

Factor A a – 1 SSA MSA MSA / MS(MPE) 

Error A= A*block (a - 1)(r - 1) SS(MPE) MS(MPE)  

Factor B b - 1  SSB MSB MSB /  MS(SPE) 

A x B (a - 1)(b - 1) SS(AxB) MS(AxB) MS(AxB) / MS(SPE) 

Error  a (r-1)(b-1) SS(SPE) MS(SPE)  

Total (subplots) rab - 1 SS   

 

Split-block (or strip-plot) design 

In the strip-plot or split-block design the subplot treatments are applied in strips across an entire 

replication of main plot treatments. 

Comparison of a 5 x 4 split-plot and a 5 x 4 strip-plot (Here only one replication is shown). In 

the strip-plot the terms main plot and subplot but there is no difference between the two (i.e., 

they are symmetric). 
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A3 A2 A1 A5 A4  A3 A2 A1 A5 A4 

B2 B1 B2 B3 B4  B2 B2 B2 B2 B2 

B1 B3 B1 B2 B3  B4 B4 B4 B4 B4 

B3 B2 B4 B4 B1  B1 B1 B1 B1 B1 

B4 B4 B3 B1 B2  B3 B3 B3 B3 B3 

Split-plot  Split-block or Strip-plot 

 

Note that the subplot treatments are continuous across the entire block or main plot, and thus 

each subplot treatment splits the block. Another term applicable to this layout is strip-plot, as 

both A and B treatments are in strips.  

The A and B treatments are independently randomized in each replication.  

Reasons for doing a split-block design 

• Physical operations (e.g. tractor operation, irrigation, harvesting) 

• The design tends to sacrifice precision in the main effects and improve precision in 

the interaction effects.   

Linear model for the split-block design 

The linear model for the split-block with RCB main plots is 

 

The ANOVA table for the RCBD split block design is 

Source Df SS MS F 

Blocks r – 1 SS(Block)   

Factor A a – 1 SSA MSA MSA / MS(MPE) 

Error A= A*block (a - 1)(r - 1) SS(MPE) MS(MPE)  

Factor B b - 1  SSB MSB MSB /  MS(STPE) 

Error B= B*block (b - 1)(r - 1) SS(STPE) MS(STPE)  

A x B (a - 1)(b - 1) SS(AxB) MS(AxB) MS(AxB) / MS(SPE) 

Error C=A*B*block (a-1)(r-1)(b-1) SS(SPE) MS(SPE)  

Total (subplots) rab – 1 SS   
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The package agricolae offers a broad functionality in the design of experiments, especially for 

experiments in agriculture and improvements of plants, which can also be used for other 

purposes.  

It contains the analysis of: complete randomized blocks, split plot and strip plot, Latin, Graeco-

Latin, augmented block designs, lattice, alpha, cyclic, balanced incomplete block designs. It 

also has several procedures of experimental data analysis, such as the comparisons of 

treatments of Waller-Duncan, Duncan, Bonferroni, Student-Newman-Keuls, Scheffe, Ryan, 

Einot and Gabriel and Welsch multiple range test or the classic LSD and Tukey; and non-

parametric comparisons, such as Friedman, Durbin, Kruskal-Wallis, Median and Waerden, 

stability analysis, and other procedures applied in genetics, and also procedures in biodiversity 

and descriptive statistics, 

> install.packages("agricolae") 

> library(agricolae) 

Layout for CRD, RBD, LSD, Split and Strip plot designs 

• Form layout for CRD design for five treatments with 4,3,4,4,3 repliactions 

respectively. 

trt <- c("A", "B", "C","D","E") 

repeticion <- c(4, 3, 4,4,3) 

outdesign <- design.crd(trt,r=repeticion,seed=777,serie=0) 

outdesign 

• Form layout for RBD design for five treatments with 4 replications 

> trt <- c("A", "B", "C","D","E") 

> repeticion <- 4 

> outdesign <- design.rcbd(trt,r=repeticion, seed=-513, serie=2) 

>  book2 <- outdesign$book 

> book2<- zigzag(outdesign) # zigzag numeration 

> print(outdesign$sketch) 

 

     [,1] [,2] [,3] [,4] [,5] 

[1,] "E"  "B"  "D"  "A"  "C"  

[2,] "B"  "A"  "D"  "C"  "E"  

[3,] "C"  "E"  "A"  "B"  "D"  

[4,] "D"  "C"  "E"  "B"  "A"  

 

  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 10 - 
 

• Form layout for Latin square design for four treatments  

> trt <- c("A", "B", "C", "D")  

> outdesign <- design.lsd(trt, seed=543, serie=2)  

> print(outdesign$sketch) 

     [,1] [,2] [,3] [,4] 

[1,] "B"  "C"  "A"  "D"  

[2,] "D"  "A"  "C"  "B"  

[3,] "C"  "D"  "B"  "A"  

[4,] "A"  "B"  "D"  "C"  

 

• Form layout for Split plot designs for main plot with four treatments and sub plot with 

three treatments. 

>  trt1<-c("A","B","C","D") 

>  trt2<-c("s1","s2","s3") 

>  outdesign <-design.split(trt1,trt2,r=3,serie=2,seed=543) 

>  book10 <- outdesign$book 

>  head(book10 

> p<-book10$trt1[seq(1,36,3)] 

> q<-NULL 

> for(i in 1:12) 

+  q <- c(q,paste(book10$trt2[3*(i-1)+1],book10$trt2[3*(i-1)+2], book10$trt2[3*(i-1)+3])) 

>  print(t(matrix(p,c(4,3)))) 

     [,1] [,2] [,3] [,4] 

[1,] "D"  "B"  "A"  "C"  

[2,] "B"  "C"  "A"  "D"  

[3,] "D"  "B"  "A"  "C"  

> print(t(matrix(q,c(4,3)))) 

         [,1]        [,2]          [,3]       [,4]       

[1,] "s2 s1 s3"   "s1 s2 s3"   "s3 s1 s2"   "s3 s2 s1" 

[2,] "s2 s3 s1"   "s1 s2 s3"   "s2 s3 s1"   "s1 s3 s2" 

[3,] "s3 s1 s2"   "s2 s3 s1"   "s3 s1 s2"   "s1 s3 s2" 

 

• Form layout for Strip-plot designs for factor A with four treatments and factor B with 

three treatments. 

>  trt1<-c("A","B","C","D") 
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>  trt2<-c("s1","s2","s3") 

> outdesign <-design.strip(trt1,trt2,r=3,serie=2,seed=543) 

> book11 <- outdesign$book 

> head(book11) 

> t3<-paste(book11$trt1, book11$trt2) 

> B1<-t(matrix(t3[1:12],c(3,4))) 

>  B2<-t(matrix(t3[13:24],c(3,4))) 

>  B3<-t(matrix(t3[25:36],c(3,4))) 

>  print(B1) 

     [,1]   [,2]   [,3]   

[1,] "D s2" "D s1" "D s3" 

[2,] "B s2" "B s1" "B s3" 

[3,] "A s2" "A s1" "A s3" 

[4,] "C s2" "C s1" "C s3" 

>  print(B2) 

     [,1]   [,2]   [,3]   

[1,] "C s2" "C s1" "C s3" 

[2,] "B s2" "B s1" "B s3" 

[3,] "A s2" "A s1" "A s3" 

[4,] "D s2" "D s1" "D s3" 

 >  print(B3) 

     [,1]   [,2]   [,3]   

[1,] "A s3" "A s2" "A s1" 

[2,] "B s3" "B s2" "B s1" 

[3,] "D s3" "D s2" "D s1" 

[4,] "C s3" "C s2" "C s1" 

 

> head(aa) 

     trt rep  ear_plnt earlength  grainwt grainyield  

1     T1   R1     50.2     20.5     3.9     104.9 

2     T2   R1     41.8     19.5     3.7      88.0 

3     T3   R1     39.2     19.0     4.5      80.0 
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4     T4   R1     37.8     20.0     4.3      80.8 

5     T5   R1     35.6     20.0     4.1      60.0 

6     T6   R1     53.4     19.2     4.2      96.4 

Completely randomised block design (CRD) 

> model_1<-aov(grainyield ~trt,data=aa) 

> summary(model_1) 

            Df Sum Sq Mean Sq F value   Pr(>F)     

trt          7   6248   892.6   11.36 2.77e-06 *** 

Residuals   24   1885    78.6                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Interpretation: 

Treatment effect is significant  

Randomised block design (RBD) 

> model_2<-aov(grainyield ~trt+repl,data=aa) 

> summary(model_2) 

            Df Sum Sq Mean Sq F value   Pr(>F)     

trt          7   6248   892.6  12.369 3.42e-06 *** 

rep          3    370   123.3   1.708    0.196     

Residuals   21   1516    72.2                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Interpretation: 

Treatment effect is significant at 1 % level of significance  

 

Pair-wise treatment mean comparison  

> library(agricolae) 

> comparison_LSD= LSD.test(model_1,"trt",alpha=0.05,group=TRUE) 

> comparison_LSD 

$statistics 
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   MSerror Df     Mean       CV  t.value      LSD 

  78.55594 24 84.70312 10.46382 2.063899   12.93489 

$groups 

   grainyield  groups 

T6   100.375      a 

T2    98.250     ab 

T4    91.625    abc 

T7    90.975    abc 

T1    85.675    bcd 

T8    82.025     cd 

T3    74.575      d 

T5    54.125      e 

Interpretation: 

• CD value =12.93 @ 5% Level of significance  

• Similar letters shows non significance of treatment means   

comparison_LSD_2= LSD.test(model_2,"trt",alpha=0.05,group=TRUE) 

> comparison_LSD_2 

$statistics 

   MSerror Df     Mean       CV  t.value      LSD 

  72.16674 21 84.70312 10.02927 2.079614 12.49212 

 

$groups 

   grainyield  groups 

T6   100.375      a 

T2    98.250      a 

T4    91.625     ab 

T7    90.975     ab 

T1    85.675     bc 

T8    82.025     bc 

T3    74.575      c 

T5    54.125      d 
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Interpretation: 

• CD value =12.49 @ 5% Level of significance  

• Similar letters shows non significance of treatment means   

 

One can also use Duncan’s Multiple Comparison test instead of LSD test 

> dmrt=duncan.test(model_2,"trt",alpha=0.05,console=TRUE) 

 

Analysis of Factorial experiment in RBD layout 

Use fact.txt  data 

 

> fact=read.table("E:\\TNAU\\workshop\\fact.txt",header=TRUE) 

> model<-aov(yield~rep+A+B+A:B,data=fact) 

> summary(model) 

            Df Sum Sq Mean Sq F value   Pr(>F)     

rep          3  20.12   6.707   1.752 0.175473     

A            3  80.16  26.719   6.982 0.000917 *** 

B            2  38.17  19.086   4.987 0.012811 *   

A:B          6   1.52   0.254   0.066 0.998692     

Residuals   33 126.30   3.827                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Interpretation: 

• Effect of Factor A  effect is significant at 1 % level of significance 

• Effect of Factor B is significant at 5 % level of significance 

• Interaction of  AB  is not  significant  

> outA<-LSD.test(model,"A" ,alpha=0.05, group=TRUE) 

> outB<-LSD.test(model,"B" ,alpha=0.05, group=TRUE) 

> df=model$df.residual 

> summary(model)[[1]]$"Mean Sq" 
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[1]  6.7066667 26.7194444 19.0858333  0.2536111  3.8271212 

> er=summary(model)[[1]]$"Mean Sq"[5] 

> outAB<-with(fact,LSD.test(yield,A:B,df,er)) 

> outA 

$statistics 

   MSerror Df     Mean       CV  t.value      LSD 

  3.827121 33 5.866667 33.34607 2.034515 1.624881 

$groups 

      yield groups 

A4 7.383333      a 

A3 6.875000      a 

A2 4.900000      b 

A1 4.308333      b 

> outB 

$statistics 

   MSerror Df     Mean       CV  t.value      LSD 

  3.827121 33 5.866667 33.34607 2.034515 1.407188 

$groups 

    yield groups 

B3 7.0125      a 

B2 5.7500     ab 

B1 4.8375      b 

Here no need to proceed for comparison of Interaction AB effect as it is non-significant 

in ANOVA table  
 

Analysis of Split plot experiment in RBD layout 

> model<-with(fact,sp.plot(rep,A,B,yield)) 

Analysis of Variance Table 

Response: yield 

    Df  Sum Sq Mean Sq F value    Pr(>F)     

rep  3  20.120  6.7067  0.5247    0.6761     

A    3  80.158 26.7194  2.0906    0.1718     
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Ea   9 115.028 12.7809                       

B    2  38.172 19.0858 40.6562 1.962e-08 *** 

A:B  6   1.522  0.2536  0.5402    0.7724     

Eb  24  11.267  0.4694                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

cv(a) = 60.9 %, cv(b) = 11.7 %, Mean = 5.866667  

Interpretation: 

• Effect of Factor A  effect is non  significant  

• Effect of Factor B is significant at 1 % level of significance 

• Interaction of  AB  is not  significant  

 

> outA<-with(fact,LSD.test(yield,A,model$gl.a,model$Ea)) 

> outB<-with(fact,LSD.test(yield,B,model$gl.b,model$Eb)) 

> outAB<-with(fact,LSD.test(yield,A:B,model$gl.b,model$Eb)) 

Here no need to proceed for comparison of factor A and Interaction AB effect as it is 

 non-significant in ANOVA table 

> outB 

$statistics 

    MSerror Df     Mean       CV  t.value       LSD 

  0.4694444 24 5.866667 11.67887 2.063899 0.4999602 

$groups 

    yield groups 

B3 7.0125      a 

B2 5.7500      b 

B1 4.8375      c 

Analysis of Strip plot experiment in RBD layout 

> model<-with(fact,strip.plot(rep,A,B,yield)) 

Analysis of Variance Table 

    Df  Sum Sq Mean Sq F value    Pr(>F)     
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rep  3  20.120  6.7067                       

A    3  80.158 26.7194  2.0906    0.1718     

Ea   9 115.028 12.7809                       

B    2  38.172 19.0858 66.3855 8.083e-05 *** 

Eb   6   1.725  0.2875                       

B:A  6   1.522  0.2536  0.4784    0.8156     

Ec  18   9.542  0.5301                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

cv(a) = 60.9 %, cv(b) = 9.1 %, cv(c) = 12.4 %, Mean = 5.866667  

Interpretation: 

• Effect of Factor A effect is non-significant  

• Effect of Factor B is significant at 1 % level of significance 

• Interaction of AB is not significant  

> outA<-with(fact,LSD.test(yield,A,model$gl.a,model$Ea)) 

> outB<-with(fact,LSD.test(yield,B,model$gl.b,model$Eb)) 

> outAB<-with(fact,LSD.test(yield,A:B,model$gl.c,model$Ec)) 

Here no need to proceed for comparison of factor A and Interaction AB effect as it is non-

significant in ANOVA table 

> outB 

$statistics 

  MSerror Df     Mean       CV  t.value       LSD 

   0.2875  6 5.866667 9.139607 2.446912 0.4638657 

$groups 

    yield groups 

B3 7.0125      a 

B2 5.7500      b 

B1 4.8375      c 

> plot(outA, variation="SE") 

> plot(outB, variation="SE") 
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> plot(outAB, variation="SE",las=2) 

 

Suggested Readings: 

Gomez, K.A. and Gomez, A. (1984) Statistical Procedure for Agricultural Research—

Hand Book. John Wiley & Sons, New York. 

Steel and Torrie (1960) Principles and procedures ofstatistics. McGraw-Hill Book Co.11. 

Wood, P.J. and Burley, J. (1991) A Tree for All Reasons.ICRAF.  

Rangaswamy, R.(1995). A Text Book of AgriculturalStatistics New Age International (P) 

Limited, Publishers. 

Nigam, A. K. and Gupta, V. K. (1979) Handbook ofAnalysis of Agricultural 

Experiments. Publication of I. A. S. R.I. New Delhi. 
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Split Plot and Strip Plot Data Analysis 

Aliza Pradhan 

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115 

Email: alizapradhan@gmail.com 

 

Split-Plot Design 

In factorial experiments, it is sometimes necessary to accommodate factors that require 

different plot sizes. For example, treatments involving irrigation or tillage typically need larger 

plots, whereas those involving fertilizers or weedicides can be conducted on smaller plots. To 

manage such situations within the same experiment, the split-plot design has been developed. 

In this design, the factor requiring larger plots is assigned as main plot. Each main plot is then 

divided into smaller sub-plots, which are used for the second factor. Treatments are randomly 

assigned to the main plots and sub-plots accordingly. 

Advantages  

• Increased precision in the estimates of sub-plot treatments and interaction compared to 

factorial RBD with two factors 

• Helps in saving the experimental material 

Disadvantages  

• Effects of the main plot treatments estimated with less precision  

• Analysis becomes more complex when more than two factors or missing data occur.  

Layout and Analysis 

M: Main plot factor, 3 levels (Trash)  

N: Subplot factor, 3 levels (Nutrient)    

No. of replications: 03 

Replication I  Replication II  Replication III 

M1 M2 M3  M2 M3 M1  M3 M1 M2 

N1 N2 N3  N3 N2 N2  N1 N2 N3 

N2 N3 N1  N2 N1 N3  N2 N3 N1 

N3 N1 N2  N1 N3 N1  N3 N1 N2 

  

 

The linear model for the split-plot design 
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The linear model for the split-plot with RBD main plots is  

Y𝑖𝑗𝑘 = 𝜇 + ri + mj + eij + sk + (ms)jk + eijk  

Where Yijk = the observation of ith replication, jth main plot and kth sub-plot, 

µ =  overall mean  

ri = ith replication effect  

mj = jth main plot treatment effect  

eij = main plot error or error (a) 

sk = kth sub-plot treatment effect  

(ms)jk = Interaction effect  

eijk = error component for sub-plot and interaction or error (b) 

Split-plot ANOVA 

Sources of 

variation 

df SS MS F 

Replication r -1 R SS  R MS R MS/ E MS(a) 

Factor A m -1 A SS A MS A MS/ E MS(a) 

Error (a)  (r-1) (m-1) SS(a) E MS(a)  

Factor B s -1 B SS B MS B MS/ E MS(b) 

 A x B (m -1) (s -1) AB SS AB MS AB MS/ E 

MS(b) 

Error (b) m (r-1) (s-1) E SS(b) E MS(b)  

Total  rms -1 TSS   

 

Example dataset 

For example, suppose a researcher wants to study the effect of two different fertilizers methods 

and four fertilizer doses on plant growth.  

Factor A (mainplot): Fertilizer methods 

• F1 = Broadcasting 

• F2 = Fertigation 
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Factor B (subplot): Fertilizer dose 

• T1 = Control (0 kg per acre) 

• T2 = 25 kg N per acre 

• T3 = 50 kg N per acre 

• T4 = 75 kg N per acre 

Let’s analyze the data in R. 

# Creating data 

library(dplyr) 

set.seed(123) 

Control <- rnorm(n = 6, mean = 15, sd = 3.4) 

T25kg <- rnorm(n = 6, mean = 22, sd = 5.5) 

T50kg <- rnorm(n = 6, mean = 45, sd = 9.5) 

T75kg <- rnorm(n = 6, mean = 35, sd = 8.2) 

yield <- as.data.frame(cbind(Control, T25kg, T50kg, T75kg))  

yield$Method <- rep(c("Broadcasting", "Fertigation"), each = 3) 

yield$Rep <- rep(c(1:3), times = 2) 

df <- yield %>% tidyr::pivot_longer(!c(Rep, Method),  

                                    names_to = "Dose",  

                                    values_to = "yield") 

df <- as.data.frame(df) 

df 

str(df) 

# converting variables to factors 

df$Method <- as.factor(df$Method) 

df$Dose <- as.factor(df$Dose) 

str(df) 
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# converting variables to factors 

df$Method <- as.factor(df$Method) 

df$Dose <- as.factor(df$Dose) 

str(df) 

 

library(agricolae) 

# Fitting ANOVA model for split plot design 

model <- with(df,  

              sp.plot(block = Rep,   

                      pplot = Method,  

                      splot = Dose,  

                      Y = yield)) 
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The output of the model showed that only fertilizers application dose variable showed highly 

significant effect on the rice yield with probability value lower than 0.01. So next we shall 

proceed with mean comparison test to see differences in the mean values of variable Dose. 

# Getting Edf and EMS from sp.plot model 

# Error df for main plot factor (Method) 

Edfa <- model$gl.a 

Edfa 

# Error df for subplot factor (Dose) 

Edfb <- model$gl.b 

Edfb 

# Error MS for main plot factor (Method) 

EMSa <- model$Ea 

EMSa 

# Error MS for subplot factor (Dose) 

EMSb <- model$Eb 

EMSb 

 

LSD <- with(df, LSD.test(y = yield,  

                      trt = Dose, 
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                      DFerror = Edfb,  

                      MSerror = EMSb, 

                      alpha = 0.05, 

                      group = TRUE,  

                      console = TRUE))       

 

 

Interpretation of LSD output: Maximum yield was recorded in plots where nitrogen was 

applied at the rate of 50 kg per acre followed by 75 kg while the least production was 

recorded in control where nitrogen was not applied. 

 

B) Split-Block (or Strip-Plot) Design  

Another variant of the split-plot design is the strip-plot design, also known as the split-block 

design. This design is recommended when two factors are involved and both require large plot 

sizes. For example, it is suitable for experiments involving tillage and water management. The 

strip-plot design is also useful when higher precision is desired for the interaction between the 

two factors, rather than for the individual factors themselves. 
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In a strip-plot or split-block design, the subplot treatments are applied in strips that run across 

the entire replication of the main plot treatments. Although the terms "main plot" and "subplot" 

are used, there is no hierarchical difference between them in this design. Each subplot treatment 

forms a continuous strip across the entire block, effectively splitting the block. The name "strip-

plot" comes from the fact that both factors are arranged in strips. Here, both the factors are 

independently randomized within each replication. 

Layout and Analysis 

T: Main plot/vertical strip factor, 3 levels (Tillage)  

I: Subplot/horizontal strip factor, 3 levels (Irrigation)    

No. of replications: 03 

Replication I  Replication II  Replication III 

T1 T2 T3  T2 T3 T1  T3 T1 T2 

I1 I1 I1  I3 I3 I3  I2 I2 I2 

I2 I2 I2  I1 I1 I1  I3 I3 I3 

I3 I3 I3  I2 I2 I2  I1 I1 I1 

Linear model for the strip-plot design  

Y𝑖𝑗𝑘 = 𝜇 +𝑅𝑘 +𝛼𝑖+ 𝛽𝑗+ 𝛾𝑖𝑘+ Ɵjk+(𝛼𝛽)𝑖𝑗+𝜀𝑖𝑗𝑘  

Where: k = 1, ..., r indexes the replications,   

i = 1, ..., a indexes the main plot levels, and   

j = 1, ..., b indexes the subplot levels.    

Yijk: observation  

µ: mean  

Rk: replication effect  

αi: Factor A effect  

βj: Factor B effect  

(αβ)ij: Interaction AB effect  

γik: error associated with the main plots 

 Ɵjk: error associated with the subplots 

εijk: error associated with the interaction   
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Strip-Plot ANOVA 

Source Df SS MS F 

Replication r-1 R SS  R MS R MS/ E MS (a) 

Factor A a-1 A SS A MS A MS/E MS (a) 

Error (a) (r-1) (a-1) E SS (a) MS(MPE)  

Factor B b-1 B SS B MS B MS/E MS(a) 

Error (b) (r-1) (b-1)  E SS(b) E MS (b)  

 A x B (a-1) (b-1) AB SS AB MS AB MS / E MS (c) 

Error (c)  (r-1) (a-1) (b-1) E SS(c) E MS(c)  

Total  rab-1 T SS   

 

Analysis of strip-plot design in R 

library(agricolae) 

# Fitting ANOVA model for strip plot design 

model <- with(df, strip.plot(block = Rep,   

                      pplot = Method,  

                      splot = Dose,  

                      Y = yield)) 
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1. Repeated measures design 

A Repeated Measures design is an experimental design in which the same participants engage 

in each condition of the independent variable. In other words, every condition of the experiment 

involves the identical group of participants. This type of design is also referred to as within 

groups or within-subjects design. It entails obtaining multiple measures of a single variable 

from the same or matched individuals, either under varying conditions or across multiple time 

periods. This contrasts with a design where participants are randomly assigned to a treatment 

and stay on that treatment for the entirety of the trial. For instance, repeated measurements are 

gathered in a longitudinal study to evaluate changes over time, or patients receive a single 

treatment, with outcomes assessed over specific intervals (e.g., at 1, 4, and 8 weeks). Repeated 

measures ANOVAs are the suitable statistical tests for drawing conclusions regarding repeated 

measures designs. 

2. Repeated measures ANOVA 

2.1 Introduction 

We can think back to the examples of paired t-tests, where we have a simple experiment 

involving only two experimental conditions. In paired-samples t-tests, we are limited to 

comparing two means. But what if our design included more than two experimental conditions? 

For instance, an experiment could consist of three levels for the independent variable, with 

each participant providing data for each of these three levels. Therefore, this scenario must be 

treated as an ANOVA issue. ANOVAs can assess whether there is a difference between two 

or more means. The repeated measures ANOVA serves as an extension of the paired t-test and 

is utilized to compare subjects across time. It is a statistical method that can incorporate both 

within-subject and between-subject factors. An example of this could involve evaluating a 

disease over the course of 12 weeks of treatment (for example, at weeks 0, 6, and 12). The 

design of the repeated measures ANOVA can be represented in a tabular format, as follows: 
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This table outlines a study involving six participants (S1 to S6) 

who were assessed under three different conditions or at three 

distinct time points (T1 to T3). It is highlighted that 

"time/condition" may also be referred to as "treatment," which 

is classified as a within-subjects factor. All these terms pertain 

to the same concept, namely subjects undergoing repeated 

assessments at various time intervals or under different conditions/treatments. 

2.2 Hypothesis for Repeated Measures ANOVA 

The repeated measures ANOVA is utilized to evaluate whether there are differences among 

related population means. First, we define the null hypothesis, which asserts that the population 

means are equal: 

  H0: μ1 = μ2 = μ3 = … = µk  

In this case, µ represents the population mean, and k denotes the number of related groups.  

The alternative hypothesis (H1) posits that the related population means are not equal (meaning 

at least one mean differs from another), i.e. 

H1: at least two means are significantly different 

One major benefit of repeated measures ANOVA, as well as repeated measures designs in 

general, is the capability to separate out variability caused by individual differences.  

2.3 Partitioning the Sums of Squares 

Consider the overall formula for the F-statistic: 

F = MSTreatment / MSError = (SSTreatment/dfTreatment)/(SSError/dfError)  (2.1) 

In a typical design, variability arises from individual differences, which combines with the 

treatment and error components: 

SSTotal = SSTreat + SSError       (2.2) 

dfTotal = n − 1 

Subjects Time/Condition 

T1 T2 T3 

S₁ S₁ S₁ S₁ 

S₂ S₂ S₂ S₂ 

S₃ S₃ S₃ S₃ 

S₄ S₄ S₄ S₄ 

S₅ S₅ S₅ S₅ 

S₆ S₆ S₆ S₆ 
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In a repeated measures design, we separate subject variability from the treatment and error 

components. In this scenario, variability can be divided into between-treatments variability (or 

within-subjects effects, not accounting for individual differences) and within-treatments 

variability. The within-treatments variability can further be broken down into between-subjects 

variability (individual differences) and error (excluding individual differences): 

SSTotal = SS(between treatment) + SSwithin treatment     (2.3) 

SSTotal = SSTreat (excluding individual difference) + SSSubjects + SSError   (2.4) 

dfTotal = dfTreat (within subjects) + dfbetween subjects + dferror = (k − 1) + (n − 1) + ((n − k)(n − 1)) 

Referring to the general structure of the F-statistic, it is evident that by removing the between-

subjects variability, the F-value will increase because the error sum of squares will be smaller, 

leading to a reduced MSE. It is important to note that partitioning variability decreases the 

degrees of freedom for the F-test, so the significance of the between-subjects variability must 

be substantial enough to compensate for the reduction in degrees of freedom. If the between-

subjects variability is minimal, this method may actually lower the F-value. 

As with any statistical analysis, specific assumptions must be fulfilled to justify utilizing this 

test. In Repeated Measures ANOVA, the assumptions include: no significant outliers, a 

normality assumption where each level of the independent variable should be approximately 

normally distributed, and the Assumption of Sphericity, which is the repeated measures 

equivalent of homogeneity of variances. 

2.4 Calculating a Repeated Measures ANOVA 

Consider a scenario in which a 6-month exercise training program was conducted, and six 

participants had their fitness levels assessed at three different times: before the intervention, at 

the 3-months, and after the intervention. Their information is presented below, accompanied 

by some calculations. 

Exercise Intervention 

Subjects Pre- 3 Months 6 Months Subject Means 

1 45 50 55 50 

2 42 42 45 43 

3 36 41 43 40 

4 39 35 40 38 
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5 51 55 59 55 

6 44 49 56 49.7 

Monthly Means 42.8 45.3 49.7  

                                                                                       Grand Mean: 45.9 

In this context, the null hypothesis (H0) states that the average blood pressure remains constant 

across all time points (pre-, 3 months, and 6 months). The alternative hypothesis suggests that 

the average blood pressure varies significantly at one or more time intervals. The F-test 

associated with the repeated measures ANOVA examines whether the observed differences are 

genuine or merely due to random variation. To begin, we will compute SSTreat.  

Calculation of SSTreat  

( )
2

1

k

Treat i i

i

SS n x x
=

= −
       (2.5) 

where, k represents the total number of conditions, ni denotes the count of subjects within each 

specific (ith) condition,  signifies the average for each (ith) condition, and  indicates the 

overall average. Therefore, in the example provided above, we have: 

2 2 26[(42.8 45.9) (45.3 45.9) (49.7 45.9) ]TreatSS = − + − + −
 

=143.44 

Calculation of SSsubjects 

Each subject can be viewed as a separate block. In simpler terms, we consider each subject as 

a level of a distinct factor referred to as subjects. Consequently, we can compute SSsubjects in 

the following way: 

( )
2

1

m

Subject j

j

SS m x x
=

= −
       (2.6) 

where m represents the total number of subjects, jx
 mean of subject j, and  the grand mean. 

As illustrated in our example, it is: 

( )
6

2

1

3Subject j

j

SS x x
=

= −
 

=3[(50-5.9)2+(43-45.9)2+(40-45.9)2+(38-45.9)2+(55-45.9)2+(49.7-45.9)2] 

=658.3. 
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Calculation of SSwithin treatment(SSw) 

The within-groups variation (SSw) is determined in a manner similar to that of independent 

ANOVA, represented as follows: 

2

1 1

( )
k m

w ij i

i j

SS x x
= =

= −
 

In this equation, xij refers to the measurement of the jth subject under condition i. 

SSw=[(45-42.8)2+(42-42.8)2+(3z6-42.8)2+(39-42.8)2+(51-42.8)2+(44-42.8)2+ 

 [(50-45.3)2+(42-45.3)2+(41-45.3)2+(35-45.3)2-(55-45.3)2+(49-45.3)2+ 

 [(55-49.7) 2+…(56-49.7)2 

 =715.5 

Calculation of SSError 

SSError can be computed using either equation 2.3 or 2.4. These methods are: 

SSError = SSTotal - SSTreat (excluding individual difference) - SSSubject     (2.7) 

SSError =SSwithin treatment- SSSubject       (2.8) 

Both methods for calculating the F-statistic necessitate determining SSSubject; however, one 

method allows for SSError to be derived using either equation 2.7 or 2.8. In this case, we will 

compute it by using the first method, which involves calculating SSwithin treatment. 

We can now find SSerror by substituting values into equation 2.7: 

SSError =715.5-658.3 

  =57.2 

Next, to compute the mean sum of squares for treatment (MSTreat), we divide SSTreat by its 

corresponding degrees of freedom (k - 1), where k represents the number of time points. In our 

example, this yields: 
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1

Treat
Treat

SS
MS

k
=

−        =71.72 

Likewise, we calculate the mean sum of squares for error (MSerror) by dividing SSError by the 

degrees of freedom (m - 1)(k - 1).  

( 1)( 1)

Error
Error

SS
MS

m k
=

− −  

=5.72 

As a result, we can compute the F-statistic as follows: 

71.72

5.72

Treat

Error

MS
F

MS
=

=
 

=12.53 

Next, we should look for the critical F-statistic for our F-distribution, considering the degrees 

of freedom for treatment (dfTreat) and error (dfError), to assess if our F-statistic reveals a 

statistically significant outcome or not. 

2.5 Result of a Repeated Measures ANOVA 

The critical value for the F-statistic in the above scenario is F(2, 10) = 12.53. This indicates 

that we can refute the null hypothesis and support the alternative hypothesis. Therefore, we can 

determine that time has a statistically significant effect on fitness gained from exercise. 

Alternatively, we can state that the six-month exercise training program significantly impacted 

fitness levels. 

2.6 Tabular Presentation of a Repeated Measures ANOVA 

Typically, the findings of a repeated measures ANOVA are conveyed in the narrative format, 

as demonstrated above, rather than in a table when drafting a report. Nevertheless, many 

statistical software programs display the outcomes of a repeated measures ANOVA in a tabular 

format. The table below illustrates the format one might encounter.  
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Source SS df MS F 

Treatment SSTreat  k-1 MSTreat  MSTreat / MSError 

Subjects SSSubject m-1 MSSubject MSSubject / MSError 

Error SSError (k-1)(m-1) MSError  

Total SSTotal N-1   

Repeated Measures ANOVA Output Table 

In some cases, statistical software may not display the “subjects” row in the output table, and 

the “total” row may also be missing. The F-statistic located in the first row (which corresponds 

to the time/conditions) is the value that will indicate whether there is a significant difference 

between at least two means. Referring to the example in Section 2.4, if we exclude the Subjects 

and Total rows, we have: 

Source SS df MS F 

Treatment 143.44 2 71.72 12.53 

Error 57.2 10 5.72  

2.7 Repeated measures ANOVA in R 

2.7.1 One-way repeated measures ANOVA 

We will conduct the analysis in R utilizing a dataset that includes the self-esteem scores of 10 

individuals measured at three different time points during a particular diet to assess whether 

their self-esteem has improved. A repeated measures ANOVA will be executed to analyze the 

influence of time on the self-esteem scores. The dataset can be found in the “datarium” 

package. Below are the R codes along with the interpretation of the results they produce. 

>install.packages("datarium") 

>install.packages("rstatix") 

>library(rstatix) 

>library(datarium) 

>data("selfesteem")  

# Combine columns t1, t2, and t3 into a long format 

# Transform id and time into categorical variables 
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>selfesteem <- selfesteem %>% 

  gather(key = "time", value = "score", t1, t2, t3) %>% 

  convert_as_factor(id, time) 

>head(selfesteem, 3) 

Output: 

# A tibble: 3 x 3 

  id    time  score 

  <fct> <fct> <dbl> 

1 1     t1     4.01 

2 2     t1     2.56 

3 3     t1     3.24 

RCode: 

#Calculate summary statistics for self-esteem scores by groups (time): average and standard 

deviation (sd). 

>selfesteem %>% 

  group_by(time) %>% 

  get_summary_stats(score, type = "mean_sd") 

Result: 

# A tibble: 3 x 5 

  time  variable     n  mean    sd 

  <fct> <chr>    <dbl> <dbl> <dbl> 

1 t1    score       10  3.14 0.552 
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2 t2    score       10  4.93 0.863 

3 t3    score       10  7.64 1.14 

The assumption of normality can be assessed by applying the Shapiro-Wilk test at each time 

point in the dataset. A p-value exceeding 0.05 indicates that the data follows a normal 

distribution. You can utilize the R code below to evaluate the normality of the data: 

>selfesteem %>% group_by(time) %>% shapiro_test(score) 

Following result is obtained after running the code 

# A tibble: 3 x 4 

  time  variable statistic     p 

  <fct> <chr>        <dbl> <dbl> 

1 t1    score        0.967    0.859 

2 t2    score        0.876    0.117 

3 t3    score        0.923     0.380 

From the result of Shapiro-Wilk’s test we can see that the p > 0.05, therefore we can say that 

the self-esteem score was normally distributed at each time point. 

The assumption of sphericity will be automatically checked during the computation of the 

ANOVA test using the R function anova_test() [rstatix package]. Therefore, further we run the 

following R code 

>res.aov <- anova_test(data = selfesteem, dv = score, wid = id, within = time) 

get_anova_table(res.aov) 

#Result 

 # Effect  DFn DFd      F            p p<.05       ges 

#1   time   2      18      55.469    2.01e-08*   0.829 
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From the result we find that the self-esteem score is statistically significantly different at the 

different time points during the diet, since F(2, 18) = 55.5, p < 0.0001. Here, ges is the 

generalized effect size (amount of variability due to the within-subjects factor). 

Post-hoc tests 

One can perform multiple pairwise paired t-tests between the levels of the within-subjects 

factor (here time). P-values are adjusted using the Bonferroni multiple testing correction 

method. The R code can be written as: 

# pairwise comparisons  

>pwc <- selfesteem %>% pairwise_t_test( score ~ time, paired = TRUE, p.adjust.method = 

"bonferroni" )  

>pwc 

The result obtained as: 

# A tibble: 3 x 10 

  .y.   group1 group2    n1    n2 statistic    df           p p.adj p.adj.signif 

* <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>       <dbl> <dbl> <chr>        

1 score t1     t2        10    10     -4.97     9 0.000772     2e-3 **           

2 score t1     t3        10    10    -13.2      9 0.000000334  1e-6 ****         

3 score t2     t3        10    10     -4.87     9 0.000886     3e-3 **        

The self-esteem score was statistically significantly different at the different time points, F(2, 

18) = 55.5, p < 0.0001, generalized eta squared = 0.82. Post-hoc analyses with a Bonferroni 

adjustment revealed that all the pairwise differences, between time points, were statistically 

significantly different (p <0.05). 

2.7.2 Two-way repeated measures ANOVA 

A two-way repeated measures ANOVA can be conducted to assess if there is a significant 

interaction between diet and time regarding the self-esteem score. We’ll use 
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the selfesteem2 dataset in datarium package of R. The dataset contains the self-esteem score 

measures of 12 individuals enrolled in 2 successive short-term trials (4 weeks): control 

(placebo) and special diet trials.Each participant performed all two trials. The order of the trials 

was counterbalanced and sufficient time was allowed between trials to allow any effects of 

previous trials to have dissipated. The self-esteem scores were measured at three different 

times: at the start (t1), in the middle (t2), and at the conclusion (t3) of the trials. We aim to 

determine whether there is a significant interaction between diet and time regarding the self-

esteem scores from this dataset.  

data("selfesteem2", package = "datarium") 

selfesteem2 %>% sample_n_by(treatment, size = 1) 

## # A tibble: 2 x 5 

##   id    treatment    t1    t2    t3 

##   <fct> <fct>     <dbl> <dbl> <dbl> 

## 1 4     ctr          92    92    89 

## 2 10    Diet         90    93    95 

# Gather the columns t1, t2 and t3 into long format. 

# Convert id and time into factor variables 

selfesteem2 <- selfesteem2 %>% 

  gather(key = "time", value = "score", t1, t2, t3) %>% 

  convert_as_factor(id, time) 

# Inspect some random rows of the data by groups 

set.seed(123) 

selfesteem2 %>% sample_n_by(treatment, time, size = 1) 

## # A tibble: 6 x 4 

##   id    treatment time  score 

##   <fct> <fct>     <fct> <dbl> 

## 1 4     ctr       t1       92 

## 2 10    ctr       t2       84 

## 3 5     ctr       t3       68 
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## 4 11    Diet      t1       93 

## 5 12    Diet      t2       80 

## 6 1     Diet      t3       88 

res.aov <- anova_test( data = selfesteem2, dv = score, wid = id,  within = c(treatment, time) ) 

get_anova_table(res.aov) 

## ANOVA Table (type III tests) 

##           Effect  DFn  DFd    F        p p<.05   ges 

## 1      treatment 1.00 11.0 15.5 2.00e-03     * 0.059 

## 2           time 1.31 14.4 27.4 5.03e-05     * 0.049 

## 3 treatment:time 2.00 22.0 30.4 4.63e-07     * 0.050 

There is a statistically significant two-way interactions between treatment and time, F(2, 22) = 

30.4, p < 0.0001 

Post-hoc tests 

A significant two-way interaction indicates that the impact of treatment on the self-esteem 

score depends on the level of the time and vice versa. Therefore, one can decompose a 

significant two-way interaction into simple main effect and simple pairwise comparisons. For  

simple main effect a one-way model is run for the first variable (treatment) at each level of the 

second variable (time). Further, if the simple main effect is significant then multiple pairwise 

comparisons is performed to determine which groups are different. Again, this needs to be 

repeated considering time as first variable. 

For a non-significant two-way interaction, one need to determine whether there is any 

statistically significant main effects from the ANOVA output. 
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Introduction  

In extensive experimental programs, it is essential to conduct multiple trials of a specific set of 

treatments, such as different varieties or fertilizers, across various locations or seasons. The 

locations chosen for these repeated trials are typically experimental stations situated within the 

region. The purpose of repeating the trials is to examine how the effects of treatments vary with 

different locations. More broadly, the goal of such repetitions is to identify which treatments 

are appropriate for specific areas, which is why the tests are conducted simultaneously at a 

carefully chosen range of sites.  

Additionally, the aim of the research conducted at experimental stations is to develop 

recommendations for practitioners that encompass a broadly extensive population, whether in 

terms of space, time, or both. As a result, it is essential to verify that the outcomes derived from 

the research are applicable to multiple locations in the future and across a reasonably diverse 

geographical area.  

An individual experiment will provide precise insights solely about the specific location where 

it takes place and the time of year in which it is conducted. Therefore, it has become standard 

practice to replicate experiments at various locations or over multiple time periods to arrive at 

reliable recommendations that consider variations from place to place or over time, or both. In 

instances of repeated experiments, suitable statistical methods for a joint analysis of the data 

must be adhered to, alongside the analysis of each individual experiment based on their specific 

objectives. In the combined data analysis, the primary areas of interest would be 

i) to estimate the average response to specified treatments and  

ii) to evaluate the consistency of responses across different places or occasions, 

meaning the interaction of treatment effects with specific locations or years. 
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The utility and importance of average response estimates rely on whether the response remains 

consistent across different locations or varies, which means it depends on the presence or 

absence of interaction.  

The results of a set of trials may, therefore, be considered as belonging to one of the four 

categories: 

i) the experimental errors are homogeneous and there is no interaction,  

ii) the experimental errors are homogeneous and there is an interaction,  

iii) the experimental errors are heterogeneous and there is no interaction, and  

iv) the experimental errors are heterogeneous and there is an interaction.  

The meaningfulness of average estimates of treatment responses would therefore, depend 

largely upon the absence of presence of this interaction analysis. 

Analysis Procedure  

For combined analysis or analysis for groups of Experiments following steps are to be followed  

Step I: Construct an outline of combined analysis of variance over years or for places or 

environment, based on the basic design used. For example, the data of grain yield for four 

places, four treatments each treatment replicated five times is given in Table-1.  

Step II: Perform usual Analysis of variance for the given data. Here the experiment conducted 

is in randomized complete block design. So, perform analysis of four places separately for the 

four places. This may be done either in SAS, SPSS or EXCEL software.  

Step III: We have p error mean squares that belongs to p RBD conducted and we have to test 

the homogeneity of variances. Now we have following two situations:  

Situation I: When p = 2 In this situation, we apply F-test to assess the homogeneity of 

variances. In this context, the null and alternate hypothesis are 𝐻0: 𝜎1
2 = 𝜎2

2  and 𝐻0: 𝜎1
2 ≠ 𝜎2

2 

. Let 𝑆𝑒1
2 and 𝑆𝑒2

2 are the mean square errors (mse) for the two places. Then the value of F 

statistics will be 𝑆𝑒1
2/𝑆𝑒2

2   and this value will be tested against the Table F value at 𝑛1and 𝑛2 

degrees of freedom at 5 % level of significance, where 𝑛1and 𝑛2 are degrees of freedom (df) 

for error for the two places, respectively. If the computed F value exceeds the tabulated F 

value, then we reject the null hypothesis of homogeneity of variance, indicating that the data 

is heterogeneous across different locations; otherwise, it is homogeneous. 
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Situation II. When p > 2 

In this situation, we apply Bartlett's Chi-square test. Here null and alternate hypothesis are 

𝐻0:  𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑝
2 against the alternate hypothesis 𝐻1: at least two 𝜎𝑖

2’s are not equal, 

where 𝜎𝑖
2 is the error variance of ith year/location. Let 𝑆𝐸1

2,  𝑆𝐸2
2,  ⋯ ,  𝑆𝐸𝑝

2 are the mse of p 

years respectively and 𝑛1,  𝑛2,  ⋯ ,  𝑛𝑝 are the df for p years respectively. 

Then the test statistics for testing the homogeneity of variances is   

𝜒𝑝−1
2 =

∑𝑛𝑖 𝑙𝑜𝑔�̅�𝑒
2 − ∑𝑛𝑖 𝑙𝑜𝑔𝑠𝑒𝑖

2

1 +
1

3(𝑝 − 1)
 (∑

1
𝑛𝑖

−
1

∑𝑛𝑖
)
 

Where �̅�𝑒
2 =

∑𝑛𝑖𝑠𝑒𝑖
2

∑𝑛𝑖
 

If 𝑛𝑖 = 𝑛 

𝜒𝑝−1
2 =

𝑛[∑𝑝 𝑙𝑜𝑔�̅�𝑒
2 − ∑ 𝑙𝑜𝑔𝑠𝑒𝑖

2 ]

1 +
(𝑝 + 1)

3𝑛𝑝

 

Where 𝜒𝑝−1
2  follows chi-square distribution with p-1 df. 

If the computed value of 𝜒𝑝−1
2  exceeds the tabulated t value of 𝜒𝑝−1

2  for p-1 degrees of 

freedom, the null hypothesis of variance homogeneity is rejected, indicating that the data 

is heterogeneous across different years; otherwise, it is considered homogeneous. 

Step IV: If the variances of errors are not equal, then a combined analysis using weighted 

least squares is necessary, with weights being the inverses of the root mean square error. 

The weighted analysis is done by defining a new variable as newres = res / root mean 

square. This transformation is akin to Aitken’s transformation. As a result, this new variable 

is homogeneous, allowing for combined analysis of variance to be conducted on it. If the 

error variances are equal, there is no need for data transformation.  

Step V: Now, one can interpret the groups of experiments as a nested design with multiple 

factors embedded within one another. The various locations are considered as major blocks, 

with the experiments organized within these. Consequently, the comprehensive analysis of 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 43 - 
 

data can be approached as a nested design. For the analysis, the replication-based data of 

treatments at each location offers valuable insights. A benefit of this analysis is that it 

allows for a further decrease in the sum of squares for error since an additional source of 

variability is extracted from the experimental error, thereby minimizing the experimental 

error. This might also result in a decrease in the coefficient of variation (CV).  

Step VI: The subsequent step in the analysis is to evaluate the significance of the 

interaction between place and treatment. The question regarding the significance of the 

place treatment interaction, meaning whether the differences between treatments vary 

across different places, can be addressed by comparing the mean square for place treatment 

to the estimate of error variance using an F-test. If the mean square is deemed non-

significant, it indicates that the interaction is not present. If we assume that this interaction 

does not exist, we can combine the sum of squares for treatment places with the error sum 

of squares to obtain a more accurate estimate of error for assessing the significance of 

treatment differences. Conversely, if the interaction is significant i.e., treatment effects 

differ across places, the suitable mean square for testing the significance of treatments is 

the mean square resulting from place treatment. 

SAS code for group of experiments 

 

data suman_MCM; 

input Season$ rep trt PH NT PN PL FLL PW SPY KL KW KLKW TW IBR ZBR IPR 

ZPR; 

cards; 

WS17 1 1 162.3 8.0 8.0 32.0 29.0 3.0 23.1 2.0 0.6 3.5 9.6 13.4 20.3 6.6 14.4 

WS17 1 2 162.0 9.0 9.0 37.0 42.3 3.2 25.6 2.3 0.7 3.2 12.8 13.4 16.5 5.7 11.6 

WS17 1 3 151.0 10.0 10.0 27.6 25.0 3.9 38.9 2.4 0.7 3.2 13.1 14.4 20.3 6.9 15.5 

WS17 1 4 170.0 12.0 11.0 33.0 28.0 3.0 30.6 2.1 0.6 3.6 9.8 13.0 19.8 6.5 14.5 

WS17 1 5 158.3 4.0 4.0 33.0 46.3 1.9 8.1 2.4 0.7 3.4 12.5 14.3 19.5 6.1 13.2 

WS17 1 6 154.0 6.0 6.0 36.3 33.7 3.5 18.9 2.3 0.6 3.6 9.9 12.5 16.6 6.6 11.3 

WS17 1 7 137.7 8.0 8.0 30.3 39.0 3.4 27.4 2.4 0.7 3.4 15.4 12.7 16.4 6.4 11.0 

WS17 1 8 148.7 7.0 7.0 37.0 16.3 5.2 34.5 3.3 0.7 4.6 18.6 12.3 14.9 4.8 10.4 

WS17 1 9 165.7 12.0 12.0 33.0 36.7 2.5 30.1 2.5 0.7 3.8 12.5 12.9 20.3 5.3 14.2 

WS17 1 10 150.3 8.0 8.0 37.0 30.3 3.8 27.9 2.2 0.7 3.1 9.9 13.0 16.0 6.3 12.3 

WS17 1 11 158.3 9.0 9.0 34.3 31.0 2.9 25.4 3.1 0.8 3.8 16.4 12.7 16.3 5.5 11.4 

. 

. 

. 
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ods rtf file="SPY.rtf" style=journal; 

proc sort;   

by Season;       

run; 

ods trace on;   

ods output overallanova=MSerror; 

ods output LSmeans=lsmean; 

proc glm data = suman_MCM; 

class  rep trt; 

model SPY=rep trt; 

means trt/lsd; 

by  Season; 

quit; 

ods output close; 

ods output close; 

ods trace off;   

data required; 

 set MSerror(where=(source='Error') keep=Season  source df  ms); 

run; 

proc iml; 

use required; 

read all into a; /* use error variances in m1 variable*/ 

*a =m1[2:nrow(m1),ncol(m1)-1:ncol(m1)];/*from m1 extract variances and number of 

observations */ 

v =0;ct = 0;nchi = 0;St = 0; 

do i = 1 to nrow(a);           /* computing pooled variance */ 

            St = St + (a[i,1]-1)*a[i,2]; 

            v = v + (a[i,1]-1); 

            ct = ct + 1/(a[i,1]-1); 

end; 

S = St/v; 

dchi = (1 + (1/(3*(nrow(a)-1)))(ct-(1/v))); /*computing denominator of Bartlett's chi-

square statistic/ 

do i = 1 to nrow(a); 

nchi = nchi + (a[i,1]-1)*(log(S/a[i,2])); 

end; 

chi = nchi/dchi;probability = 1 - probchi(chi,(nrow(a)-1));/computing chi-square test 

statistic and probability./ 

df = (nrow(a)-1); 
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print probability chi df S; /* printing chi-square test statistic value, probability and degree 

of freedom*/ 

if probability >= 0.05 then Interpretation = "Data is Homogeneous at 5% level of 

Significance"; 

else Interpretation = "Data is Heterogeneous at 5% level of Significance"; 

print Interpretation; /* testing and printing interpretation*/ 

pb = char(probability); 

ods html body = 'mse.xls'; 

proc print data = required; 

var Season ms; 

run; 

ods html close; 

data transformed;   /* This set of SAS statements transforms the data*/ 

set suman_MCM; 

if  Season="WS17" then 

new_var=SPY/sqrt(0.0960354); 

if  Season="WS18" then 

new_var=SPY/sqrt(2.8010354); 

if  Season="WS19" then 

new_var=SPY/sqrt(1.8184596); 

run; 

proc glm data = transformed; 

class Season rep trt; 

model new_var SPY= Season rep(Season) trt Season*trt; 

means Season trt/lsd; 

run; 

ods rtf  close ; 

 

 

https://www.researchgate.net/publication/384019558_Analysis_of_Experimental_Designs_using_SAS
https://www.researchgate.net/publication/384019558_Analysis_of_Experimental_Designs_using_SAS
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Analysis of Incomplete Block Designs  

Manjunatha G R 

Central Silk Board, Bengaluru – 560068 
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When there are many treatments or complete blocks are unsuitable, incomplete block designs 

are useful. These were introduced by Yates to reduce variability better than randomized blocks 

or Latin squares. Precision of treatment effect increases with more replications. Similarly, 

comparing two treatments is more precise if they occur together more often. To ensure equal 

precision, treatments are placed so that: 

• Each occurs once per block, 

• Has equal replications, and 

• Every pair occurs together equally or nearly equally. 

When all treatment pairs occur together an equal number of times, the design is referred to as 

a Balanced Incomplete Block (BIB) design. If the frequency of pairwise replications differs, it 

is known as a Partially Balanced Incomplete Block (PBIB) design. These concepts are 

explained in detail by Cochran & Cox (1957). Designs such as Completely Randomized Design 

(CRD) and Randomized Complete Block Design (RCBD/RBD) are categorized as complete 

block designs. We will now focus on the balanced incomplete block design (BIBD) and the 

partially balanced incomplete block design (PBIBD), which fall under the category of 

incomplete block designs. 

1. BALANCED INCOMPLETE BLOCK DESIGN (BIBD) 

Balanced Incomplete Block (BIB) designs are highly efficient among binary incomplete block 

designs. However, they often need many replications and are not possible for all parameter 

combinations. Yates introduced them to better control heterogeneity than randomized blocks 

or Latin squares, especially with many treatments (Yates & Mather, 1963). The precision of 

estimating a treatment effect increases with more replications. Similarly, estimating the 

difference between two treatments is more precise if the pair appears together more often. This 

has been supported by Nigam & Gupta (1979), Pearce (1983), Federer (1985), and 

Montgomery (2012). 
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Balanced Incomplete Block (BIB) Designs: A BIB design is an arrangement of v treatments 

in b blocks each of size k (<v) such that 

• Each treatment occurs at most once in a block 

• Each treatment occurs in exactly r blocks 

• Each pair of treatments occurs together in exactly λ blocks. 

Five parameters denote such design D (b, k, v, r, ).  

The parameters b, k, v, r and  are not chosen arbitrarily.  

They satisfy the following relations:  

(i) bk = vr  

(ii)  (v-1) = r (k-1)  

(iii)b  v (and hence r > k)  

A BIB design for v = b = 7, r = k = 3 and λ = 1 in the following: 

1 3 7 

2 4 1 

3 5 2 

4 6 3 

5 7 4 

6 1 5 

7 2 6 

Example of BIBD 

Blocks  Treatments 

𝐵1 𝑇1, 𝑇2, 𝑇5 

𝐵2 𝑇1, 𝑇2, 𝑇6 

𝐵3 𝑇1, 𝑇3, 𝑇4 

𝐵4 𝑇1, 𝑇3, 𝑇6 

𝐵5 𝑇1, 𝑇4, 𝑇5 

𝐵6 𝑇2, 𝑇3, 𝑇4 

𝐵7 𝑇2, 𝑇3, 𝑇5 

𝐵8 𝑇2, 𝑇4, 𝑇6 

𝐵9 𝑇3, 𝑇5, 𝑇6 

𝐵10 𝑇4, 𝑇5, 𝑇6 
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Now we see how the conditions of BIBD are satisfied. 

I. bk=10*3 = 30 and vr= 6*5=30 

therefore bk=vr 

II.   (v-1) = 2*5=10 and  r (k-1) = 5*2 = 10  

Therefore  (v-1) = r (k-1) 

III. b = 10  6 

Even if the parameters satisfy the relations, it is not always possible to arrange the treatments 

in blocks to get the corresponding design. The necessary and sufficient conditions to be 

satisfied by the parameters for the existence of a BIBD are not known. 

Construction of BIB Design 

Two Latin squares are pairwise orthogonal if, when superimposed, each symbol from one 

square pairs exactly once with each symbol from the other. Three or more Latin squares are 

mutually orthogonal if every pair of them is orthogonal. A full set of s – 1 mutually orthogonal 

Latin squares exists when s = pⁿ, where p is a prime. (Fisher and Yates, 1963) 

To construct a BIB design using MOLS: 

• Arrange v = s² treatments in an s × s array. 

• Create s blocks by taking each row as a block. 

• Create another s blocks by taking each column as a block. 

• Superimpose a Latin square over the array. For each symbol in the Latin square, form 

a block with all treatments that share that symbol. 

• This gives another s blocks. 

Thus, each Latin square adds s more blocks, and the design becomes a BIB. 

The complementary design of a BIB design is also a BIB design. For example, a BIB design 

with parameters: v = 9, b = 12, r = 8, k = 6, λ = 5 has a complementary BIB design with the 

same number of treatments (v = 9) but different values for the other parameters. 
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In general, if a BIB design has parameters: v, b, r, k, λ, then its complementary design has 

parameters: 

• v′ = v 

• b′ = b 

• r′ = b − r 

• k′ = v − k 

• λ′ = b − 2r + λ 

A symmetric BIB design is one where, v = b (number of treatments = number of blocks), or r 

= k (number of replications = block size). 

In such designs, any two blocks share exactly λ treatments and example with parameters v = b 

= 7, r = k = 3, and λ = 1. 

A BIB design is called α-resolvable if its blocks can be grouped into t groups of m blocks each, 

such that “each treatment appears exactly α times in every group”. 

If, in addition: 

• Any two blocks within a group share q₁ treatments, and 

• Any two blocks from different groups share q₂ treatments, then the design is called an 

affine α-resolvable BIB design. 

The dual of a BIB design is formed by interchanging treatments and blocks. If the original 

design has parameters: v, b, r, k, λ, then the dual design has parameters: v′ = b, b′ = v, r′ = k, k′ 

= r. 

Note: The dual is not always a BIB design. However, if the original is a symmetric BIB design, 

then the dual is also a BIB design. 
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Application of BIBD: 

Application Area Example Purpose 

Crop Variety Trials 
Comparing 10 rice varieties in 5 

blocks with limited land 

Controls variability due to field 

heterogeneity 

Fertilizer Trials 
Testing 6 types of fertilizers on 

maize 

Reduces the number of plots 

needed while maintaining balance 

Pest/Disease 

Management Studies 

Evaluating multiple pest control 

methods 

Ensures fair comparison by equal 

pairing frequency 

Multilocational Trials 
Uniform testing across sites with 

limited replications per location 

Useful when resources or land size 

constrain full replication 

2. PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN (PBIBD) 

The balanced incomplete block designs have many advantages. They are connected designs as 

well as the block sizes are also equal. A restriction on using the BIBD is that they are not 

available for all parameter combinations. They exist only for certain parameters.  Sometimes, 

they require a large number of replications also. This hampers the utility of the BIBDs. For 

example, if there are v = 8 treatments and block size is k = 3 (i.e., 3 plots in each block) then 

the total number of required blocks are = 56 and so using the relationship bk  vr, the total 

number of required replicates is . 

Another key characteristic of the BIBD is its balanced efficiency. This indicates that the 

estimations of all treatment differences are achieved with equal precision. The partially 

balanced incomplete block designs (PBIBD) make some concessions on this aspect while 

aiding in the reduction of replication numbers. In simpler terms, pairs of treatments can be 

organized into various sets so that the accuracy of the estimated differences in treatment effects 

for all pairs within a set remains consistent. The partially balanced incomplete block designs 

remain connected like BIBD but no more balanced. Rather they are partially balanced in the 

sense that some pairs of treatments have the same efficiency whereas some other pairs of 

treatments have the same efficiency but different from the efficiency of earlier pairs of 

treatments. This will be illustrated more clearly in the further discussion. 
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Partially Balanced Association Schemes 

A relationship that meets the following three criteria is referred to as a partially balanced 

association scheme with m associate classes. 

I. Any two symbols can be classified as first, second,…, or mth associates and the 

relationship among these associations is symmetrical; that is, if treatment A is the ith 

associate of treatment B, then treatment B is also the ith associate of treatment A. 

II. Each treatment A within the set has a fixed number ni of treatments within the set that 

are classified as the ith associate, and this number ni (for i = 1, 2, ..., m) remains constant 

regardless of treatment A. 

III. If treatments A and B are ith associates, the total number of treatments that are both the 

ith associate of A and the kth associate of B is consistent and does not depend on the 

specific pair of ith associates A and B. 

PBIBDs with two associate classes are commonly used in practical scenarios and can be 

categorized into various types based on the association scheme. 

1. Triangular 

2. Group divisible 

3. Latin square with i constraints 

4. Cyclic and  

5. Singly – linked blocks. 

General Theory of PBIBD 

A PBIBD with m associate classes is characterized as follows. Assume there are v treatments 

available. Let b represent the number of blocks, and each block has k plots, meaning there are 

k plots in every block. The treatments are organized into b blocks in accordance with an m-

associate partially balanced association scheme that adheres to the following conditions: 

(a) every treatment appears at most once per block, 

(b) every treatment is represented exactly in r blocks and 
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(c) if two treatments are the ith associates to one another, then they included 

together in exactly in i (i = 1, 2,..., m) blocks. 

The number i is consistent regardless of the specific pair of ith associates selected. It is not 

necessary for the values of i to be unique, as some of them i  ' s can be zero. 

The parameters b, v, r, k, 1, 2 ,..., m, n1, n2 ,..., nm are referred to as the first kind parameters, 

while the second kind parameters are termed as such. It should be noted that all of the design 

is derived from the association scheme under consideration. Only  included in the definition 

of PBIBD. 

If  I for all i = 1,2,…,m then PBIBD reduces to BIBD. So BIBD is essentially a PBIBD 

with one associate class. 

Conditions of PBIBD 

• v: Number of treatments 

• b: Number of blocks 

• k: Number of treatments per block 

• r: Number of times each treatment appears across all blocks 

             λ₁, λ₂, ...: Association numbers, 

The parameters of a PBIBD are chosen such that they satisfy the following relations: 

1. bk = vr 

2. ∑ 𝑛𝑖 = 𝑣 − 1𝑚
𝑖=1  

3. ∑ 𝑛𝑖𝜆𝑖 = 𝑟(𝑘 − 1)𝑚
𝑖=1  

4. 𝑛 𝑝𝑘 = 𝑛 𝑝𝑖 =  𝑛 𝑝𝑗 

 

Example 

Suppose we have 6 treatments labelled A, B, C, D, E, and F, and we need to arrange them 

into 4 blocks, with 3 treatments per block. 
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Block Treatments 

1 A, B, C 

2 A, D, E 

3 B, D, F 

4 C, E, F 

Here: 

• Each treatment appears in two blocks (so r=2r = 2). 

• Some pairs appear more frequently than others:  

o Highly associated pairs (λ₁ = 1): (A, B), (B, C), (A, C), (D, E), (E, F), (D, F) 

– These appear together in only one block. 

o Less associated pairs (λ₂ = 0): (A, F), (B, E), (C, D) - These pairs never appear 

together in any block. 

This is a two-associate class PBIBD, where some pairs occur together more frequently, and 

others never occur together. 

Applications of PBIBD 

Area Example Purpose 

Genotype Trials Comparing 50 genotypes of wheat 
PBIBD allows comparison with 

more treatments than BIBD 

Heterogeneous 

Fields 

Trials on irregular terrain or fertility 

zones 

Flexibility in blocking based on 

partial treatment relationships 

Long-term 

Agronomy Trials 

Rotational cropping systems where 

all combinations aren’t feasible 

PBIBD accommodates partial 

comparisons over time 

 

PBIBD is useful in situations where: 

• Some treatments require more frequent comparisons (e.g., standard drug vs. new 

drugs in clinical trials). 
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• Some treatments should never be tested together (e.g., chemical compounds in 

industrial experiments). 

• There is a need for more flexibility compared to a standard BIBD. 

This makes PBIBD a practical choice when perfect balance is impossible, but some level of 

structured comparison is still needed. 

R code 

install.packages("agricolae")  # Run only if not installed 

library(agricolae) 

# Define Parameters 

treatments <- 6  # Number of treatments 

blocks <- 10  # Number of blocks 

k <- 3  # Treatments per block 

# Generate the BIBD Design 

bibd_design <- design.bib(trt = treatments, k = k, r = NULL, seed = 123) 

# View Design 

print(bibd_design$book) 

# Convert design to dataframe 

data <- bibd_design$book 

# Add simulated response values 

set.seed(123) 

data$response <- rnorm(nrow(data), mean = 50, sd = 10) 

# View Data 

head(data) 

# Fit ANOVA Model for BIBD 

bibd_model <- aov(response ~ block + treatment, data = data) 

# ANOVA Summary Table 

summary(bibd_model) 
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# Boxplot of Treatment Effects 

boxplot(response ~ treatment, data = data, col = rainbow(6), 

        main = "BIBD - Treatment Effects", xlab = "Treatment", ylab = "Response") 

### PBIBD ### 

install.packages("PBIBD")  # Run only if not installed 

library(PBIBD) 

# Define PBIBD Parameters 

treatments <- 7   # Number of treatments 

blocks <- 7       # Number of blocks 

k <- 3            # Treatments per block 

lambda <- c(1, 2) # Association scheme 

# Generate PBIBD 

pbibd_design <- PBIBD(treatments, blocks, k, lambda) 

# View Design 

print(pbibd_design) 

# Convert design to dataframe 

data <- pbibd_design$Design 

# Add simulated response values 

set.seed(123) 

data$response <- rnorm(nrow(data), mean = 50, sd = 10) 

# View Data 

head(data) 

# Fit ANOVA Model for PBIBD 

pbibd_model <- aov(response ~ Block + Treatment, data = data) 

# ANOVA Summary Table 

summary(pbibd_model) 

# Boxplot of Treatment Effects 

boxplot(response ~ Treatment, data = data, col = rainbow(7), 
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        main = "PBIBD - Treatment Effects", xlab = "Treatment", ylab = "Response") 

3. LATTICE DESIGN ANALYSIS (LSD) 

Lattice designs are a type of incomplete block design used in agricultural, biological, and 

industrial experiments when there are a large number of treatments. These designs help in 

improving precision while reducing variability. 

Yates (1936) introduced lattice designs, a class of resolvable incomplete block designs 

developed primarily for large-scale agricultural experiments. These include some BIBDs and 

PBIBDs, but not all lattice designs are balanced. 

Lattice designs are useful when: 

• A large number of treatments must be tested. 

• Full replication (as in BIBDs) is impractical due to resource constraints. 

• Flexible replication is needed (e.g., 2 replications = simple lattice, 3 = triple lattice, m 

= m-ple lattice). 

Lattice designs are characterized by grouping incomplete blocks into replications. They are 

particularly suited for variety trials in plant breeding and agronomy. 

Despite some limitations on permissible values of treatments and block sizes, lattice designs 

remain valuable tools in experimental agriculture—especially where v or t > 100, as in crop 

variety or hybrid evaluations. 

Why Use Lattice Designs? 

• When the number of treatments (t) is large, a Randomized Complete Block Design 

(RCBD) may not be feasible due to large block sizes. 

• Lattice designs help reduce the size of blocks while maintaining control over variability. 

• They improve efficiency by allowing more precise comparisons of treatments. 

Basic Properties 

• Treatments (t or v) are arranged in small blocks. 
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• Each treatment appears once per block. 

• Each treatment is replicated across blocks to ensure statistical validity. 

Types of Lattice Designs 

(i) Simple Lattice Design 

• Used when the number of treatments (t) is a perfect square (t = k2). 

• The experiment consists of k replications and k blocks per replication, each containing 

k treatments. 

(ii) Triple Lattice Design 

• Used when treatments are replicated three times. 

• Treatments are grouped into blocks of size k, but each treatment appears in three 

different blocks. 

(iii) Balanced Lattice Design 

• A more balanced version of lattice designs where each treatment appears the same 

number of times across replications. 

• Assume we have 9 treatments and 3 replications, with 3 treatments per block. 

Replication Block 1 Block 2 Block 3 

Rep 1 T1, T2, T3 T4, T5, T6 T7, T8, T9 

Rep 2 T1, T4, T7 T2, T5, T8 T3, T6, T9 

Rep 3 T1, T5, T9 T2, T6, T7 T3, T4, T8 

 

The general statistical model is: 

𝑌𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝑟𝑘 + 𝑏𝑗(𝑘) + 𝑒𝑖𝑗𝑘  

where: 

•  = observed response for treatment ii in block jj within replication kk, 

• μ = overall mean, 
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•  = effect of treatment i, 

•  = replication effect, 

•  = block effect within replication k, 

•  = random error (∼N (0, σ2)) 

Assumptions 

1. Errors are independently and normally distributed (∼N (0, σ2). 

2. Block effects are random. 

3. Treatments are fixed. 

ANOVA Table for Lattice Design 

Source of Variation DF SS MS F-ratio 

Replication r−1 SSR MSR MSR/ MSE 

Blocks within Replication r(b−1) SSB MSB MSB/MSE 

Treatments t−1 SST MST MST/MSE 

Error DFE SSE MSE  

Total N−1 SSTot   

 

Adjusting for Block Effects 

• Since blocks are incomplete, we adjust treatment means using intra-block analysis. 

• Block effects are treated as random and estimated separately. 

Treatment Mean Comparisons 

After ANOVA, if treatments are significant, post-hoc comparisons are used: 

• Least Significant Difference (LSD) 

• Tukey's HSD 

• Duncan’s Multiple Range Test (DMRT) 
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Advantages 

• Reduces block size for better control of variability. 

• More efficient than Randomized Complete Block Design (RCBD). 

• Allows multiple replications to improve accuracy. 

Disadvantages 

• Requires specialized analysis due to incomplete blocks. 

• More complex randomization than RCBD. 

• May require adjustments for block effects. 

Example:  

The following table gives the synthetic yields per plot of an experiment conducted with 32 = 9 

treatments using simple lattice designs. 

  

 

 

 

Analysis 

Compute 

Grand total(G) = 8+5+…+6 = 72 

No. of observation (n) = 18 

Grand Mean () = G/n = 72/18 = 4 

No. of replications = 2 

Block Size(k) = 3 

Correction factor CF =  =  = 288 

Total S.S. (TSS) =  

    =  82 + 52 + …+62 – 288 

          = 66 

Replication 1 

 

Blocks 

Treatments (yield 

per plot) 

1 1(8) 7(5) 4(3) 

2 3(3) 6(2) 9(6) 

3 8(3) 5(7) 2(3) 

Replication 2 

Blocks Treatments (yield 

per plot) 

4 8(2) 7(2) 9(7) 

5 4(3) 5(3) 6(3) 

6 2(2) 3(4) 1(6) 
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Treatment S.S. unadjusted (SSTreat) =  

     =(142+…+132)/2 – 288 

     = 49 

Block S.S. unadjusted (SSBloc) =  

    =(162+…+122)/3 – 288 

    = 9.33 

Treatment S.S. adjusted (SSTreat) =  

           = 51.44 

Block S.S adjusted (SSB) = SSTa+ SSBu-SSTu 

         = 51.44 + 9.33 -49.00 

         = 11.77 

Error S.S. (SSE) = TSS-SSBu-SSTa 

       = 66-51.44-9.33 

       = 5.23 

The ANOVA table is given as  

Source d.f S.S. M.S. F 

Blocks(unadj) 5 9.33   

Treatments(adj) 8 51.44 6.43 4.91 

Blocks(adj) 5 11.77 2.35 1.79 

Treatments(unadj) 8 49.00   

Error 4 5.23 1.31  

Total 17 66.00   

 Treatments effects are not significantly different 

SE(1) =  

          =  

          = 1.32, if the treatments belongs to same block 

CD(1) = t(.05,4)* SE(1) 

           = 2.776*1.32 

           = 3.66 

SE(2) =  

         = 

       = 1.477, if the treatments belongs to same block 

CD(2) = t(.05,4)* SE(2) 
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           = 2.776*1.32 

         = 4.100. 

R code 

install.packages("agricolae")  # Run only if not installed 

library(agricolae) 

# Define number of treatments 

treatments <- 9  # Must be a perfect square (e.g., 9, 16, 25) 

# Generate Lattice Design 

lattice_design <- design.lattice(trt = treatments, r = 3, seed = 123) 

# View Design 

print(lattice_design) 

# Convert design to dataframe 

data <- lattice_design$book 

# Add simulated response values 

set.seed(123) 

data$response <- rnorm(nrow(data), mean = 50, sd = 10) 

# View Data 

head(data) 

# Fit ANOVA Model for Lattice Design 

lattice_model <- aov(response ~ block + treatment, data = data) 

# ANOVA Summary Table 

summary(lattice_model) 

# Boxplot of Treatment Effects 

boxplot(response ~ treatment, data = data, col = rainbow(9), 

        main = "Lattice Design - Treatment Effects", xlab = "Treatment", ylab = "Response") 
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Response Surface Methodology for Optimization in Climate 

Change Studies  

Eldho Varghese 

ICAR-Central Marine Fisheries Research Institute 

Email: eldho.varghese@icar.org.in 

 

1. Introduction 

In product and process optimization, the conventional One-Factor-At-a-Time (OFAT) method 

evaluates only one variable at a time while keeping others fixed, which fails to account for 

interaction effects and leads to subpar optimization. Conversely, factorial designs enable the 

identification of both significant factors and notable interactions among them with fewer tests 

compared to OFAT, yet they still do not predict the optimal factor level settings needed to 

achieve the desired outcome (minimum/maximum/target responses) within the experimental 

range. The drawbacks of these traditional methods are addressed by concurrently optimizing 

all influencing variables through Response Surface Methodology (RSM), which was 

introduced by Box and Wilson in 1951. RSM facilitates the exploration of the functional 

relationships between one or more response variables and a group of experimental variables or 

factors. These techniques are typically applied after identifying a “vital few” controllable 

factors to ascertain the factor settings that will optimize the response. Designs of this nature 

are generally selected when there is an expectation of curvature in the response surface. 

RSM thus comprises a series of techniques that involve (i) establishing an experiment 

(designing an experiment) that can provide sufficient and dependable estimates of the response 

of interest, (ii) identifying a model that best represents the data gathered from the chosen design 

by performing suitable tests of hypotheses related to the model’s parameters, and (iii) finding 

the optimal conditions of the experimental factors that yield the highest (or lowest) value of 

the response. 

RSM has numerous applications in the development, enhancement, and optimization of 

processes across various research areas, including agricultural studies, food science and 

technology, biological sciences, fisheries, biochemistry, analytical chemistry, and engineering, 

etc. 

mailto:eldho.varghese@icar.org.in
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In recent years, RSM has also gained prominence in climate change research and agro-

environmental modelling, where it is used to simulate, optimize, and quantify the effects of 

complex interactions among climatic variables such as temperature, precipitation, relative 

humidity, and CO₂ concentration. For example, RSM has been employed to assess crop 

response to varying temperature and water regimes, estimate greenhouse gas emissions under 

different land management scenarios, and design stress simulation experiments in controlled 

environments. Its ability to model nonlinear relationships and interactions makes it particularly 

suitable for climate-related studies where environmental variables rarely act independently. 

Example 1: Overuse of nitrogen (N) compared to phosphorus (P) and potassium (K) presents 

serious agronomic and environmental challenges, especially under climate change conditions 

that alter nutrient uptake and soil dynamics. As temperature and rainfall patterns shift, the 

efficiency of nutrient application becomes more variable, yet farmers often rely heavily on 

nitrogenous fertilizers due to their immediate crop response and availability, while P and K 

remain underutilized. This imbalance not only reduces long-term soil fertility but also increases 

risks of greenhouse gas emissions and nutrient runoff. Traditional approaches that estimate 

optimal doses for N, P, and K individually do not account for nutrient interactions or climate-

induced variability, leading to suboptimal recommendations. In contrast, Response Surface 

Methodology (RSM) enables simultaneous optimization of these inputs by capturing nonlinear 

relationships and interactions among nutrients and environmental factors. This method 

supports the development of balanced, source-specific fertilizer strategies tailored to changing 

climatic conditions, thereby enhancing both productivity and sustainability in crop production 

systems. 

Example 2: Climate change is expected to significantly alter crop germination and early 

growth phases due to increased variability in temperature and soil moisture. Controlled 

environment experiments are commonly used to assess how seed germination responds to such 

stresses. The goal of this type of experiment is to identify the optimal combination of 

environmental conditions (e.g., temperature, soil moisture, and relative humidity) that supports 

maximum germination rate or seedling vigor. To assess the combined effects of air 

temperature, soil moisture, and relative humidity on the germination of chickpea (Cicer 

arietinum) in a growth chamber with the following levels selected based on realistic agro-

climatic ranges: 
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 Factors Levels 

1. Air Temperature (°C) 150C, 200C, 250C, 300C and 350C 

2. Soil Moisture (% field capacity) 30%, 50%, 70%, 90% and 110% 

3. Relative Humidity (%) 40%, 50%, 60%, 70%, 80% 

In this scenario, response surface methodologies for three variables, each at five evenly spaced 

levels, can be utilized. 

Example 3:  Investigations into food processing are being conducted to enhance the value of 

agricultural products. The primary aim of these investigations is for the researcher to discover 

the optimal combination of values for various parameters that are crucial for the product. 

Specifically, let’s say you’re performing an experiment on the osmotic dehydration of banana 

slices to determine the ideal mix of sugar solution concentration, solution-to-sample ratio, and 

osmosis temperature. Below are the levels for the different factors: 

 Factors Levels 

1. Concentration of sugar solution 40%, 50%, 60%, 70% and 80% 

2. Solution to sample ratio 1:1, 3:1, 5:1, 7:1 and 9:1 

3. Temperature of osmosis 250C, 350C, 450C, 550C and 650C  

In this scenario, response surface designs with three variables, each set at five evenly spaced 

levels, can be employed. 

Example 4: In climate-sensitive aquaculture, optimizing fish culture conditions is essential to 

maintain productivity under increasing environmental variability. For instance, the larval 

development of Genetically Improved Farmed Tilapia (GIFT) is highly sensitive to changes in 

water salinity and temperature, both of which are directly influenced by climate change. Rising 

sea levels and coastal intrusion increase salinity in freshwater systems, while elevated 

temperatures affect metabolic and growth rates. To identify the optimal combination of salinity 

and temperature for GIFT larval rearing under such changing conditions, Response Surface 

Methodology (RSM) using a two-factor Central Composite Design can be effectively 

employed. This design allows the modeling of nonlinear responses and interaction effects, 

helping to develop robust aquaculture practices that are resilient to climate-induced stressors. 

Example 5: In the field of analytical chemistry, anthocyanins (ACNs) have arisen as promising 

nutraceutical components for the creation of functional foods and dietary supplements. To 

increase the concentration of anthocyanins, it is essential to optimize enzyme-assisted 
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processing by focusing on specific levels of various factors. This can be accomplished through 

the use of response surface methodology, utilizing a three-level Box-Behnken design. 

 Factors Levels 

1. Enzyme Concentration (%) 0.05, 0.15 and 0.25 

2. Temperature (˚C) 50, 60 and 70 

3. Time (minutes) 30, 60 and 90 

 

2. Stages of Response Surface Methodology (RSM) 

1. Fixing the objective of the study. 

2. Screening phase or Screening Experiment involves selecting significant independent 

variables through the use of first-order response surface designs such as 2v factorial 

designs (FD), fractional replicates of the 2v factorial designs (FFD), Simplex designs, 

Plackett-Burman designs (PB), Definitive screening designs (DSD), and custom 

designs.  

3. Regression modelling: For regression modeling, the regression equation is constructed 

using the effect terms that demonstrate statistical significance regarding the response. 

If the response is accurately modeled by a linear term of the independent variables, the 

corresponding function is a first-order model. However, if the model indicates a 

significant lack of fit (as assessed by ANOVA), then a first-order model would be 

insufficient; therefore, a polynomial of a higher degree (second-order design) should 

be utilized. First-order models are generally applied in screening experiments. 

4. Experimentation using response surface design: When conducting experimentation 

with response surface designs, the appropriate second-order rotatable design should be 

chosen based on the selected experimental matrix, which takes into account the number 

of chosen factors, levels, and runs. The most frequently used second-order response 

surface designs consist of (i) 3^v factorial design, (ii) Box-Behnken design (BBD), and 

(iii) Central (face) Composite design (CCD/FFCD).  

5. Model building and validation: The process of model building and validation involves 

assessing the adequacy of the fitted model based on various mathematical-statistical 

criteria, such as prediction error sum of squares (PRESS) residuals, lack-of-fit tests, 
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residual analysis, and the coefficient of determination (R^2). In some instances, a high 

R^2 value may not necessarily reflect the accuracy of the model; in those cases, the 

absolute average deviation (AAD) serves as the most reliable measure. Once the fitted 

model is deemed adequate, the necessary optimization technique can then be applied. 

If there is a significant lack of fit evident in the model, then a higher-order model should 

be considered. 

6. Optimization of the response can be achieved through both graphical methods (like 

response surface plots and contour plots) and numerical approaches. For multi-response 

optimization, the desirability function approach is employed. 

7. Verification of results: To confirm the desired optimum, a confirmatory trial should be 

conducted to validate the results. 

3. Response Surface Models 

Let there be v  independent input or experimental variables, referred to as factors, denoted by 

v21 x,...,x,x and a response variable y  and there are N observations. The response is a function 

of input factors, i.e., 

 

 
uvuu3u2u1u e)x,...,x,x,x(fy +=             …… (1) 

where u=1,2,…,N, iux is the level of the thi  )v,...,2,1(i =  factor in the thu  treatment 

combination, uy  denotes the response obtained from thu  treatment combination. The function 

f  describes how the response is related to the input variables, while represents the random 

error associated with the observation, which is assumed to be independently and normally 

distributed with a mean zero and a common variance 2 .  

In practical scenarios, the exact form of f is unknown, so it is approximated within the 

experimental range by a polynomial of an appropriate degree in the variables. Polynomials that 

effectively represent the true dose-response relationship are termed response surface models, 

and the designs that facilitate the fitting of these response surfaces and provide metrics for 

assessing their adequacy are known as response surface designs.  

• If the function f  is a polynomial of degree one, it is termed a first order (linear) 

response surface is 
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 v

u 0 i iu

i=1

f(x ) β + β x= 
 

           …… (2) 

 

• For a polynomial of degree two, the second order (quadratic) response surface is 

 v v v-1 v
2

u 0 i iu ii iu ij iu ju

i 1 i 1 i 1 j i 1

f (x ) β β x β x β x x
= = = = +

= + + +   
 

         …… (3) 

• With polynomial of degree three, the third order (cubic) response surface is 

 v v v

u 0 i iu ii iu ju ijl iu ju lu

i 1 i j 1 i j l 1

f (x ) β β x β x x β x x x
=  =   =

= + + +  
 

       …… (4) 

0 is a constant, i, ii, iii are the ith linear, quadratic, cubic regression coefficient and 
ijβ , 

ijlβ

are the (i, j) th, (i, j, l) th interaction coefficient respectively.  

Equation (1) can be expressed in matrix notation as  

 = +Y Xβ e
 

             ..…… (5) 

Where 1 2 N(y ,y ,....y )=Y is an N x 1 vector of observations and  

• For linear regression, ( )  = = vX X L 1 ,x is an N x (v+1) matrix of linear regression with 

( )1 2 vx , x ,..., x=x is an N x v matrix of independent (explanatory) variables, 

0 1 2 v(β ,β ,β ,....β )=β(L) is a (v+1) x 1 vector of unknown parameters; 

• For quadratic response surface model, ( )X = X L | Q is an N x 
v 2

2

+ 
 
 

 matrix with 

( ) ( )2 2 2

1 2 v 1 2 1 3 v-1 vx ,x ,...x ,x x ,x x ,....x x=X Q and ( )β L |Q  takes ( )( )v 1 v 2 / 2 1+ +     
vector 

of the unknown parameters, where 11 22 vv 12 13 v-1,v( ) (β ,β ,...,β ,β ,β ,...,β )=β Q . 

• For cubic response surface model, ( )X = X L | Q | C is an N x 
v 3

3

+ 
 
 

 matrix with 

  ( )3 3 2 2

1 v 1 2 v-1 v v-2 v-1 vx ,...x ,x x ,....x x ,..., x x x=X C and
v 3

3

+ 
 
 

 x 1 is a vector of ( )β L |Q |C  
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corresponds to X , 1 2 N(e ,e ,....e )=e
 
is an N x 1 vector of random errors distributed as N 

(0, 2 IN ).  

By ordinary least squares, the estimates of β ’s are  

1ˆ ( )− =β XX XY  

and variance-covariance matrix is 

1 2ˆD( ) ( ) σ−=β XX  

With estimate of σ2 can be obtained as 

2
ˆ ˆ(

ˆ
N (v 1)




=
− +

Y - Xβ) (Y -Xβ)

 

Since the variance of parameters ˆD( )β relies on the design matrix ( )X X , one can select the 

design matrix X with mutually orthogonal column vectors to ensure that the components of β̂  

of the estimates have zero pairwise correlation and are thus independent.  

Orthogonality: A design is considered orthogonal if it is represented as diagonal, which means 

that the columns of X are mutually orthogonal, resulting in the levels of corresponding 

variables being linearly independent. In this scenario, the elements of will be uncorrelated, 

facilitating the independent assessment of the significance of unknown parameters. Therefore, 

a design is classified as orthogonal if it provides independent information regarding the effects 

of various parameters in the model (Box and Hunter, 1957). Note: This pertains to the First 

Order Orthogonal Design [FOOD]. It is evident from the definition that orthogonal designs for 

models of higher degrees are not feasible. A type of orthogonal design can be achieved by 

representing the response function in terms of orthogonal polynomials. However, this approach 

has the drawback that the parameters of the new model are influenced by the design. 

 

Rotatability: A design is considered rotatable if it maintains a constant prediction variance for 

all points that are equidistant from the design center. The variance associated with the estimate 

of the mean response at a specific point x0 is.  

2 1
0 0 0ˆV(y(x )) σ x ( ) x− = X X  
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If the variance is uniform for all points x0 that are situated the same distance from the design 

center, the design is recognized as possessing the property of rotatability. To guarantee 

orthogonality among parameter estimates and consistency in the variance of estimated 

responses at points equidistant from the design center, the xiu values must adhere to the 

following Orthogonality-Rotatability conditions. When rotatability is achieved, the variance of 

the estimated response is expressed as a function of 
v

2 2

i0

i=1

x d= . Consequently, the variance of 

the estimated response at all points equidistant from the design center will be identical.  

Orthogonality-Rotatability conditions of RSD: 

1 N

iu

u 1

x 0,

 i 1,2,..,v

=

=

 =



 

2 N

iu ju

u 1

x x 0,

 i j 1,2,..,v

=

=

  =



 

3 N
2

iu 2

u 1

x Nλ constant, 

 i 1,2,...,v

=

= =

 =



 

4 N N
4 2 2

iu iu ju 4

u 1 u 1

x 3 x x 3Nλ constant, i j 1,2,...,v
= =

= = =   = 
 

and all other sums of powers and products up to and including order four are zero 

5 
4

2

2

λ v

λ v 2


+
  (non-singularity condition) 

6 N N N
6 2 4 2 2 2

iu iu ju iu ju ku 6

u 1 u 1 u 1

x 5 x x 15 x x x 15Nλ constant; for all i j k
= = =

= = = =    
 

and all other sums of powers and products up to and encompassing order six are equal to zero. 

7 
2 6

2

4

λ λ v 2

λ v 4

+


+
 (non-singularity condition) 

The designs satisfying conditions (1 to 3), (1 to 5), (1 to 7) are called First Order Rotatable 

Designs (FORDs)/ Orthogonal Designs, Second Order Rotatable Designs (SORDs) and Third 

Order Rotatable Design (TORD). 

4. Response Surface Designs 

Response Surface Designs (RSDs) are widely utilized in experiments to ascertain the 

connection between the response and a range of experimental factors (both quantitative and 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 70 - 
 

qualitative) and to identify the combination of factor levels that produces optimal responses 

(Khuri and Cornell, 1996; Myers et al., 2016). RSDs find extensive applicability in the 

development, enhancement, and optimization of processes across various scientific fields. 

Numerous books can be referenced for a deeper understanding of the underlying principles of 

the theory, as outlined by Myers (1971), Khuri and Cornell (1996), Khuri (2006), Box and 

Draper (2007), and Myers et al. (2016). Additionally, several review papers discussing the 

concept of Response Surface Methodology (RSM) are available (Hill and Hunter, 1966; Mead 

and Pike, 1975; Myers et al., 1989; Myers et al., 2004; Khuri and Mukhopadhyay, 2010; 

Hemavathi et al., 2022). In this context, some of the frequently used RSDs will be examined. 

Factorial designs are commonly employed in experiments with multiple factors where it is 

essential to explore the combined effects (main effects and interactions) of these factors on a 

response variable. A significant specific instance of the factorial design occurs when each of 

the v factors of interest has only two levels. Since each replication of this design consists of 

exactly 2v experimental trials or runs, these designs are typically referred to as 2v factorial 

designs. The category of 2v factorial designs holds considerable importance in response surface 

methodology. More specifically, they are applied in three key areas: 

1. The 2v design (or a portion of it) is beneficial at the beginning of a response surface study, 

where screening experiments aim to pinpoint the critical process or system variables. 

2. A 2v design is frequently utilized to develop a first-order response surface model and to 

produce estimates for factor effects. 

3. A 2v design serves as a fundamental component for creating other advanced response 

surface designs. For instance, by supplementing a 2v design with axial runs, one can 

derive a central composite design, which is among the most significant designs for fitting 

second-order response surface models. 

The central composite design (CCD) is the most widely used category of second-order designs. 

It was proposed by Box and Wilson in 1951. The primary motivation for using CCD stems 

from its application in sequential experimentation. This design incorporates a two-level 

factorial or fractional design (resolution V) along with a set of 2v axial or star points and several 

central points. 
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 0         .   .    .     0 

 .       .     .   .    .      . 

 .       .     .   .    .      . 

 .       .     .   .    .      . 

0      0    .   .    .     - 

0      0    .   .    .       

The design consists of F factorial points, 2v axial points, and nc center runs. The overall number 

of runs equals F + 2v + nc. The factorial points serve as a variance optimal design for a first-

order model or a model that includes a first-order plus two-factor interaction. Center runs 

provide insight into the presence of curvature within the system. When curvature is detected in 

the system, the inclusion of axial points enables efficient estimation of the pure quadratic terms.  

To fit second-order response surfaces, Box and Behnken (1960) developed a set of effective 

three-level designs. This category of designs is grounded in the creation of BIB designs. In 

various RSM scenarios, the scope of research is often too extensive to conduct all runs 

uniformly. Consequently, second-order designs that facilitate blocking—specifically, the 

incorporation of block effects—are essential and fascinating to study. It is vital that the design 

points are allocated to blocks in a manner that minimizes their influence on the model 

coefficients. The desired characteristic is orthogonal blocking, which means that the block 

effects in the model are orthogonal to the coefficients of the model. 

5.  RSM using software 

5.1. R Software for RSM 

There are R packages that can be utilized for creating response surface designs as well as for 

conducting analysis. 

A few examples have been included below. 
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To install the package named “rsm” 
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Generation of Box-Behnken design 

 

For fitting the model 

 

Sample data taken from Design Resource Server 

https://drs.icar.gov.in/Analysis%20of%20data/Analysis%20of%20Data.html 

install.packages("rsm") 

library(rsm)  

attach(rsd)  

analysis<- rsm(yield~ SO(N,S), data=rsd) 

summary(analysis) 

https://drs.icar.gov.in/Analysis%20of%20data/Analysis%20of%20Data.html
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#To provide contour plot# 

rsd.lm <- lm(yield~ poly(N,S, degree = 3), data = rsd) 

contour(mpg.lm, N ~ S, image = TRUE) 

detach(rsd) 

5.2. Design Expert Software for RSM 

(i) Construction of CCD 

Go to main menu and click Central Composite under response surface tab 

Enter the number of factors and continue 
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Select the number of response variables and continue 

 

 

 

  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 76 - 
 

Layout of the design as follows: 

 

(ii) Construction of Box-Behnken Design 

Go to main menu and click Box-behnken under response surface tab 

Enter the number of factors and number of blocks and then continue 
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Give the block labels (If required) 

 

 

Select the number of response variables and continue 
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Layout of the design as follows: 

 

6.   Practical Exercise 

Exercise 6.1. (Taken from E book chapter written by V K Sharma and Rajender Parsad): 

A central composite rotatable design was established to examine the impact of three fertilizer 

components on the yield of snap beans in field conditions. The fertilizer components and their 

corresponding amounts applied included nitrogen (N), ranging from 0.89 to 2.83 kg/plot; 

phosphoric acid (P2O5) from 0.265 to 1.336 kg/plot; and potash (K2O), from 0.27 to 1.89 

kg/plot. The primary response measured is the average yield of snap beans in kilograms per 

plot. The levels for nitrogen, phosphoric acid, and potash are coded, with the coded variables 

expressed as 

X1 = (N-1.62)/0.71, X2 = (P2O5-0.80)/0.31, X3 = (K2O -1.08)/0.48 

The values of 1.62, 0.80 and 1.08 kg/plot denote the centers for nitrogen, phosphoric acid, and 

potash, respectively. The experimental design utilizes five levels for each variable. The coded 

and actual levels of the variables are presented as follows. 

 Levels of xi 

 -1.682 -1.000 0.000 +1.000 +1.682 

N 0.42 0.91 1.62 2.34 2.83 
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P2O5 0.26 0.48 0.80 1.12 1.33 

K2O 0.27 0.60 1.08 1.57 1.89 

A total of six central point replications were conducted to estimate the variance of experimental 

error. 

The complete second-order model that will be fitted to obtain the values is 

 
 
= =


==

+++=
2

1i

3

2i
iiii

3

1i

2
iii

3

1i
ii0 xxxxY

+e 

The table below presents the design settings of 1x , 2x  and 3x
 for N, P2O5, K2O, along with 

the observed yields in kg at 15 design points. 

Table 1. Central Composite Rotatable Design Settings in the Coded Variables 1x , 2x  and 3x
, 

the original variables N, P2O5, K2O and the Average Yield of Snap Beans at Each Setting 

1x  2x  3x
 

N P2O5 K2O Yield 

-1 -1 -1 0.913 0.481 0.607 5.076 

1 -1 -1 2.344 0.481 0.607 3.798 

-1 1 -1 0.913 1.120 0.607 3.798 

1 1 -1 2.344 1.120 0.607 3.469 

-1 -1 1 0.913 0.481 1.570 4.023 

1 -1 1 2.344 0.481 1.570 4.905 

-1 1 1 0.913 1.120 1.570 5.287 

1 1 1 2.344 1.120 1.570 4.963 

-1.682 0 0 0.423 0.796 1.089 3.541 

1.682 0 0 2.830 0.796 1.089 3.541 

0 -1.682 0 1.629 0.265 1.089 5.436 

0 1.682 0 1.629 1.336 1.089 4.977 

0 0 -1.682 1.629 0.796 0.270 3.591 

0 0 1.682 1.629 0.796 1.899 4.693 

0 0 0 1.629 0.796 1.089 4.563 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.599 

0 0 0 1.629 0.796 1.089 4.275 

0 0 0 1.629 0.796 1.089 5.188 

0 0 0 1.629 0.796 1.089 4.959 
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Analysis of data using Design Expert is as follows: 

Check whether any transformation is required 

 

Select the model 
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See for significance of the model fitted 

 

Proceed for optimization and specify the target 
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See for desirable solutions 

 

See the confirmation report 

Various surface plots can be generated – Contour and 3D surface plot 

 

                 

One can select a practically feasible combination of N, P and K. 

 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 83 - 
 

7. Machine Learning Approaches for Optimization Trials 

In recent years, machine learning (ML) approaches have emerged as powerful tools for 

optimization trials across various scientific domains, including agriculture, environmental 

modeling, and climate studies. Unlike traditional statistical methods that often require 

predefined model structures, ML algorithms such as Random Forests, Support Vector 

Machines, Gradient Boosting, and Artificial Neural Networks can model complex, nonlinear 

relationships between multiple input variables and response outcomes with minimal 

assumptions. These approaches excel in handling large, multidimensional datasets, capturing 

intricate interactions, and identifying patterns that may be overlooked by conventional 

techniques. In optimization trials, ML can be integrated with global search algorithms like 

Genetic Algorithms or Bayesian Optimization to identify optimal input combinations for 

maximizing or minimizing a desired outcome. Moreover, ML models offer adaptive learning, 

enabling continuous model refinement as new data become available, which is particularly 

valuable in dynamic and uncertain environments such as those affected by climate change. 

7.1 Example: An Integrated Generalized Additive Model–Genetic Algorithm (GAM–GA) 

Optimization Approach in Climate Studies 

To support the conservation of coral reef ecosystems, it is vital to identify potential climate 

refugia, areas where environmental stress is minimized and conditions remain relatively stable 

and favourable. In this study, an Optimal Environmental Window (OEW) was determined 

through an integrated approach combining Generalized Additive Models (GAMs) and Genetic 

Algorithms (GAs). GAMs were used to model nonlinear relationships between the Coral 

Resilience Index (CRI) and key environmental variables, while GAs were applied to optimize 

and select the best combination of predictor variables contributing to reef resilience. Secondary 

in situ data, including Live Coral Cover (LC), Damaged Coral Cover (DC), and Macroalgal 

Cover (MC), were collected from the Andaman and Nicobar Islands, a key coral reef region 

within India’s Exclusive Economic Zone (EEZ). These metrics were used to compute the CRI, 

serving as a proxy for reef health and recovery potential. The integrated GAM–GA 

methodology enabled the identification of OEWs that represent optimal environmental 

conditions associated with low CRI values—indicative of resilient coral ecosystems. To ensure 

the robustness and reliability of the optimized conditions, bootstrapping techniques were 

employed to generate confidence intervals for both the predictor variables and the estimated 
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CRI responses. This data-driven framework offers critical insights into environmental 

thresholds essential for coral reef persistence and underscores the potential of OEW-based 

strategies in climate-resilient conservation and restoration planning (Joseph et al., 2025). 

References 

Box, G. E. P. and Behnken, D. W. 1960. Some new three level designs for the study of 

quantitative variables. Technometrics, 2, 455–475. 

Box, G. E. P. and Wilson, K. B. 1951. On the experimental attainment of optimum conditions. 

J. Roy. Statist. Soc., Ser. B, 13, 1-45. 

Box, G. E. P., and N. R. Draper. 2007. Response Surfaces, Mixtures, and Ridge Analyses, 2nd 

ed. Hoboken, NJ: Wiley. 

Joseph, N.K., Varghese, E., Shafeeque, M. and George, N. 2025. Optimal environmental 

window of coral reef bright spots in Andaman and Nicobar Islands: An integrated 

GAM–GA optimization approach. Environmental Monitoring and Assessment. Under 

Print. 

Hill, W. J. and Hunter, W. G. 1966. A review of response surface methodology, A literature 

survey. Technometrics, 84, 571- 590. 

Hemavathi, M., Varghese, E., Shekhar, S., Jaggi, S., Bhowmik, A. and Sathianandan, T.V., 

2022c. Run order consideration for sequential third order rotatable designs. 

Communications in Statistics-Simulation and Computation, 1-14. DOI: 

10.1080/03610918.2022.2039706    

Khuri, A. I. 2006. Response surface methodology and related topics. Singapore: World 

Scientific Publishing. 

Khuri, A. I., and J. A. Cornell. 1996. Response surfaces, designs and analyses, 2nd ed. New 

York: Dekker. 

Khuri, A. I. and Mukhopadhyay, S. 2010. Response surface methodology. Wiley 

interdisciplinary reviews. Comput. Statist., 2(2), 128-149. 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 85 - 
 

Mead, R. and Pike, D. J. 1975. A review of response surface methodology from a biometrics 

viewpoint. Biometrics, 31, 803-851. 

Myers RH. 1971. Response surface methodology. Allyn and Bacon, Boston. 

Myers R. H, Khuri A. I and Carter WH. 1989. Response methodology, 1966-1988, 

Technometrics, 31, 137-157. 

Myers R. H, Montgomery D. C, Vining GG, Borror CM and Kowalski SM. 2004. Response 

surface methodology a retrospective and literature survey. J Qual Technol, 36 (1), 53-

77. 

Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2016. Response surface 

methodology: Process and product optimization using designed experiments, 4th ed. 

Hoboken, NJ: John and Wiley Sons. 

  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 86 - 
 

Generation Mean Analysis  

Rafat Sultana 

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115 

Email: rafat.hayat@gmail.com  

 

Crop improvement relies on continuous selection and hybridization methods to enhance the 

genetic makeup of plants, aiming to breed superior phenotypes with greater economic value 

for humankind. This practice dates back thousands of years to the dawn of human civilization, 

beginning as an art carried out by farmers and evolving into a science driven by plant breeders. 

The main aim of plant breeding is to improve both qualitative (oligogenic) and quantitative 

(polygenic) traits, including yield, nutritional quality, resistance to abiotic and biotic stresses, 

and changes in maturity duration or growth habit (such as determinate vs. indeterminate growth 

or dormancy). Agronomically important traits like plant height, branching, and erect or trailing 

growth habits are also key targets of improvement. Additionally, breeding objectives often 

include eliminating toxic compounds, achieving non-shattering seed characteristics, promoting 

synchronous maturity, and introducing photoperiod and temperature insensitivity. Broader 

goals such as enhancing adaptability across environments and developing varieties suitable for 

new growing seasons in various crops are also central to modern plant breeding efforts. To 

improve these complex traits effectively, the choice of selection and breeding procedures for 

the genetic enhancement of any crop depends largely on understanding the type and relative 

contributions of genetic components—namely additive, dominance, and epistatic effects—as 

well as the presence of non-allelic interactions for each trait in the plant material. The 

complexity of many important traits, which are often controlled by multiple genes and their 

interactions, poses significant challenges for deciphering their inheritance patterns and 

improving them through selection. 

1. Why is Generation Mean Analysis (GMA) Needed? 

Generation mean analysis is a quantitative genetics method used to estimate the types and 

magnitude of gene effects controlling a trait in a crop or organism. 

It relies on comparing the means of different generations derived from crossing two parents — 

typically: P₁ (Parent 1), P₂ (Parent 2), F₁ (First filial generation), and F₂ (Second filial 

generation) and their backcross. GMA offers a robust framework for dissecting the genetic 
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architecture underlying complex traits. By analysing the means of parental, filial, and backcross 

generations, GMA enables breeders to partition genetic effects into additive, dominance, and 

epistatic components. This understanding helps breeders design more efficient and targeted 

selection strategies for crop and improvement such as 

I. Complex Traits Are Polygenic: Most important crop traits (yield, stress tolerance, 

quality) are controlled by many genes (polygenes), each with small effects — often with 

additive, dominance, and epistatic interactions. Conventional selection alone cannot 

reveal these underlying genetic contributions. 

II. Dissect Inheritance Patterns: Breeders need to know if a trait is controlled mainly by 

additive effects (which respond well to selection) or if dominance and epistasis are 

involved (which require different strategies). 

III. Guide Breeding Strategies: By identifying the predominant type of gene action, GMA 

informs breeders when to apply selection (early vs. late generations) or whether hybrid 

breeding may be more effective. 

IV. Detect Epistasis: GMA (with scaling and joint scaling tests) can detect non-allelic 

interactions (epistasis), which are often responsible for failure of simple Mendelian 

expectations in segregating populations. 

V. Practical & Cost-Effective: Unlike genomic or molecular tools, GMA uses phenotypic 

data from traditional crosses, making it accessible and affordable, especially in resource-

limited breeding programs 

2. Principle behind Generation Mean Analysis (GMA) 

The Core Principal of GMA is that the mean performance of different generations derived from 

a cross between two contrasting parents reflects the underlying genetic effects (additive, 

dominance, epistasis) controlling a quantitative trait. By analysing these means, it can be 

estimated how much each component contributes to phenotypic variation — even in complex 

traits influenced by multiple genes. Mendelian inheritance refers to the principles of biological 

inheritance discovered by Gregor John Mendel in 1865 and 1866, rediscovered in 1900 by 

Hugo de Vries and Carl Correns, and later popularized by William Bateson. Mendel’s 

discoveries of how traits (such as color and shape) are passed down from one generation to the 
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next led the concept of dominant and recessive modes of inheritance. Hence, Generation Mean 

Analysis is fundamentally an application of Mendel’s laws of segregation and independent 

assortment to populations of segregating generations, allowing estimation of genetic 

components controlling complex traits through their effects on generation means.   

How is GMA linked to Mendelian genetics? 

Generation Mean Analysis is grounded in Mendel’s laws of inheritance, especially 

Law of Segregation: Alleles segregate during gamete formation, leading to predictable 

genotype and phenotype frequencies in offspring. According to this law, during gamete 

formation, the alleles for each gene segregate from each other so that each gamete carries only 

one allele for each gene. During fertilization, when the gametes combine, the resulting 

offspring inherit one allele from each parent 

Law of Independent Assortment: Genes at different loci assort independently (when loci are 

unlinked), which is key when modeling polygenic traits. This law states that genes of different 

traits can segregate independently during the formation of gametes which means the 

inheritance of one gene does not affect the inheritance of another gene. In other words, alleles 

of different genes segregate independently of one another during gamete formation. This 

principle assumes that the genes are located on different chromosomes or are far apart from 

each other on the same chromosome.  

These laws mean that, for example: 

• In F₁, all individuals are heterozygous and their mean reflects dominance deviations if 

present. 

• In F₂, segregation of alleles produces expected proportions of homozygotes and 

heterozygotes, the F₂ mean reflects the combined contributions of additive and 

dominance effects, and any deviations point to epistasis.  

Why is this important? 

• GMA extends Mendel’s single-gene principles to polygenic, quantitative traits by 

applying the same segregation and assortment laws to many genes at once. 
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• It connects classic Mendelian theory with modern quantitative genetics, helping 

breeders interpret complex inheritance patterns using basic genetic laws. 

3. Partitioning genetic variance 

Mendelian genetics predicts not only the distribution of genotypes but also how alleles 

contribute to genetic variance components (additive, dominance, epistatic), which is what 

GMA estimates from observed means.  Genetic variance, on the other hand, refers to the 

variability in genetic traits observed within a population. Genetic variance arises from 

differences in the alleles carried by individuals in a population. These differences can be due 

to mutations, recombination etc. Genetic variance is important for natural selection and 

evolution. It allows for the presence of diverse traits within a population, and these traits can 

confer advantages or disadvantages in different environments. Genetic variance can be 

measured and quantified using various statistical methods, such as heritability, which estimates 

the proportion of variation in a trait that is due to genetic factors. Understanding both 

Mendelian inheritance and genetic variance is helpful for comprehending the transmission of 

traits from one generation to the next and the mechanisms underlying genetic diversity within 

populations. 

  The partitioning of genetic variance in plants refers to the analysis of the various sources of 

genetic variation within a population or species. It helps us to understand the relative 

contributions of different genetic factors to the observed phenotypic variation. Analysis of 

variance (ANOVA) separates the total phenotypic variance into different components, 

including the genetic variance, environmental variance, and interaction effects. The 

environmental variance represents the contribution of non-genetic factors such as growing 

conditions, soil fertility, and other environmental factors that can influence phenotypic 

variation.  

The genetic variance can be partitioned into three major components: additive genetic variance, 

dominance genetic variance, and interaction (epistatic) genetic variance.  

3.1 Additive Genetic Variance: This component of genetic variance is associated with the 

effects of individual genes that contribute additively to the phenotype. These genes typically 

have independent and cumulative effects on the trait. Additive genetic variance can be passed 
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from parents to offspring in a predictable manner and can be estimated using quantitative 

genetics methods such as narrow-sense heritability.  

3.2 Dominance Genetic Variance: Dominance genetic variance arises when the combination 

of alleles at a particular locus produces a phenotypic effect that is different from the additive 

effects of the individual alleles. In other words, the heterozygote's phenotype differs from the 

average of the two homozygotes. Dominance effects can mask or enhance the expression of 

alleles at a particular locus, leading to additional sources of genetic variation.  

3.3 Interaction (Epistatic) Genetic Variance: Interaction genetic variance, also known as 

epistatic variance, arises from the nonadditive interactions between genes at different loci. It 

accounts for the genetic variation resulting from the combined effects of multiple genes 

influencing a trait. Epistasis can be additive (when the combined effect is the sum of individual 

effects) or non-additive (when the combined effect is different from the sum of individual 

effects). By decomposing the genetic variance into these components, researchers can better 

understand the genetic structure of traits and assess the importance of different forms of genetic 

variation. This understanding is vital for plant breeders, as it assists them in crafting efficient 

breeding strategies aimed at enhancing desired traits, including yield, disease resistance, or 

stress tolerance.  

4. Concepts of gene effects, gene frequencies, and their interactions:  

Gene effects, gene frequencies, and their interactions are important concepts in the field of 

genetics and population genetics. Gene effects refer to the various ways in which genes can 

influence an organism's phenotype, or observable characteristics. Different types of gene 

effects are as follows;  

4.1 Additive Effects: Additive gene effects occur when multiple genes contribute to a trait in 

a cumulative manner. Each gene has a small effect on the phenotype, and the effects are 

additive. For example, height in humans is influenced by multiple genes, and each gene 

contributes a small amount to the overall height.  

4.2 Dominance Effects: Dominance gene effects occur when one allele (a variant of a gene) 

obscures the influence of another allele located at the same locus. When an individual possesses 

two different alleles for a gene, the dominant allele determines the phenotype while the 

recessive allele stays hidden. For instance, in Mendelian genetics, if a person receives a 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 91 - 
 

dominant allele for a particular trait (like brown eyes) from one parent and a recessive allele 

(such as blue eyes) from the other parent, the dominant allele will determine the color of the 

eyes. 

 4.3 Epistatic Effects: Epistasis occurs when the effects of one gene mask or modify the effects 

of another gene. In other words, the interaction between two or more genes affects the 

phenotype. Epistasis can be either masking or modifying. Masking epistasis occurs when one 

gene masks the expression of another gene, while modifying epistasis occurs when the 

interaction between genes results in a modified expression of a trait. Epistatic effects can be 

observed in various traits, such as coat color in mammals.  

4.4 Gene Frequencies: Gene frequencies, also known as allele frequencies, represent the 

relative abundance of different alleles within a population. Alleles are alternative forms of a 

gene that occupy the same locus on homologous chromosomes. The frequency of a particular 

allele is determined by counting the number of times it occurs in a population and dividing it 

by the total number of alleles at that locus. Gene frequencies are essential in population genetics 

and help in understanding patterns of genetic variation and evolution within a population. They 

can change over time due to several factors, including genetic drift, gene flow, mutation, 

natural selection, and non-random mating. The study of gene frequencies provides insights into 

population genetics, genetic diversity, and evolutionary processes.  

5. Generation Mean Analysis and Testing Models:  

The idea of generation mean analysis was introduced by Hayman (1958) and Jinks and Jones 

(1958) for evaluating gene action or variance components. This method relies on multiple 

generations and parental types, including F1, F2, and back crosses (B1 and B2). Mean values 

across replications were utilized to assess the genetic effects. The evaluation involved six or 

five generation populations in replicated field trials, and a biometrical model was created 

following the principles of generation mean analysis. This approach is valuable for determining 

primary effects such as additive and dominance, alongside digenic effects like additive x 

additive, additive x dominance, and dominance x dominance, as well as potential trigenic 

effects. 

 5.1 Scaling test (Testing of Models)  

The scaling test was given by Mather (1949).  
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The means of the different generation’s viz., P1, P2, F1, F2, B1and B2 were used to test  

𝐴 = 2𝐵1 − 𝑃1 − 𝐹1 ……………………………………………………………(1)  

𝐵 = 2𝐵2 − 𝑃2 − 𝐹1…………………………………………………………… (2) 

 𝐶 = 4𝐹2 − 2𝐹1 − 𝑃1 − 𝑃2 …………………………………………………..(3)  

𝐷 = 2𝐹2 − 𝐵1 − 𝐵2 ………………………………………………………….(4) 

P1, P2, F1, F2, B1, B2 are means of different generations over all replications.  

The variances of the quantities A, B, C and D were calculated from the respective means of 

different generations. 

𝑉A = 4𝑉 (𝐵1) – 𝑉 (𝑃1) – 𝑉 (𝐹1)……………………………………………….. (5) 

 𝑉B = 4𝑉 (𝐵2) – 𝑉 (𝑃2) – 𝑉 (𝐹1) ……………………………………………….(6)  

𝑉c = 16𝑉 (𝐹2) – 𝑉 (𝐹1) – 𝑉 (𝑃1) – 𝑉 (𝑃2)……………………………………... (7)  

𝑉D = 4𝑉 (𝐹2) – 𝑉 (𝐵1) – 𝑉 (𝐵2) ………………………………………………...(8) 

Where, VA, VB, VC, VD are variances of scales A, B, C and D respectively while V(P1), 

V(P2), V(F1) and V(F2) are variances of respective generations.  

The standard errors of A, B, C and D respective by are obtained as VA,VB,VC, VD and 

utilized for testing the significance of the deviations of the scales from zero. The significance 

of scales, A, B, C and D is determined by comparing the calculated and table ’t’ values.  

𝑡𝐴 = 𝐴 √𝑉𝐴 ……………………………………………………………………….(9) 

 𝑡𝐴 = 𝐵 √𝑉𝐴𝐵 …………………………………………………………………….(10) 

 𝑡𝐴 = 𝐶 

√𝑉𝐶……………………………………………………………………………………………. 

(11)  

𝑡𝐴 = 𝐷 √𝑉𝐷 ……………………………………………………………………….(12) 

The significance of A and B scales indicate the presence of all the three types of non-allelic 

gene interaction viz., additive x additive, additive x dominance and dominance x dominance. 

The significance of C scale suggests dominance x dominance, while the D scale significance 

marks the presence of additive x additive type of non-allelic gene interactions.  

5.2. Joint scaling test: Cavelli (1952) has proposed the Joint scaling test to test the presence 

of epistasis. In this test any combination of six populations are included at a time, whereas in 

individual scaling test only three or four populations were included in the study at a time which 

is the major drawback of this scaling test.  

Estimation of gene effects with different models.  The model to be used will depend on two 

factors, the first factor is presence or absence of epistasis and the second being the type and 

number of generations 
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5.2.1Three parameter model  

This method was proposed by Jinks and Jones (1958). When there is no indication of epistasis 

by scaling test, this method is followed. The gene effects of mean (m), additive (d) and 

dominance (h) were estimated  

5.2.2 Five parameter model  

This model is used when back crosses are not available. It this model five gene effects viz., 

Mean (m), Additive effect (d), Dominance effect (h), Additive x Additive interaction effect (i) 

and Dominance x Dominance interaction effect (l) but do not give information regarding 

Additive x Dominance interaction effect (j)  

5.2.3 Six parameter model  

The generation means were evaluated using the method proposed by Hayman (1959) to gain 

insights into the inheritance of different traits. These generation means served to estimate the 

six genetic parameters, namely (m), (d), (h), (i), and (j), of the digenic interaction model, which 

correspond to F2 mean, additive gene action, dominance genetic effect, additive × additive 

gene interaction effect, additive × dominance gene interaction effect, and dominance × 

dominance gene interaction effect, respectively, under the assumption that there is no linkage 

and no higher-order gene interaction. Using the generation means as reference points, the six 

genetic parameters were computed by following the relationship between the corresponding 

generation means and genetic effects. 

 Components of generation means 

𝑃1 = 𝑚 + (𝑑) + (𝑖) ……………………………………………………………..(13) 

 𝑃2 = 𝑚 − (𝑑) + (𝑖) ……………………………………………………………..(14)  

𝐹1 = 𝑚 + (ℎ) + (𝑙)……………………………………………………………… (15) 

𝐹2 = 𝑚 + ½(ℎ) + ¼(𝑙)………………………………………………………….. (16)  

𝐵1= 𝑚 + ½(𝑑) + ½(ℎ) + ¼(𝑖) + ¼(𝑗) + ¼(𝑙) ……………………………………(17)  

𝐵2 = 𝑚 − ½(𝑑) + ½(ℎ) + ¼(𝑖) + ¼(𝑗) + ¼(𝑙) ……………………………………(18)  

When scales A, B, C and D were significantly different from zero, a digenic interaction model 

was assumed and the following six parameters are estimated (Hayman, 1958).  

𝑑 = 𝐵1     − 𝐵2      

Mean (m) = 𝐹2     ……………………………………………………………………….(19)  

Additive effect 𝑑 = 𝐵1     − 𝐵2     ………………………………………………………..(20)  

𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 (ℎ) = 𝐹  1 + 4(𝐹  2) − 1/2 (𝑃  1) − 1/2 (𝑃  1) + 2 𝐵   1 − 2𝐵   2… (21) 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 94 - 
 

 Additive x Additive interaction effect (i) = 2 𝐵   1 + 2𝐵   2 + 4𝐹  2 …………………..(22) 

 Additive x Dominance interaction effect (j) = 2 𝐵   1 − 𝑃  1 − 2𝐵   2 + 𝑃  2…………. (23) 

 Dominance x Dominance interaction effect (l) 𝑃  1 + 𝑃  2 + 2𝐹  1 + 4𝐹  2 − 4 𝐵   1 − 4𝐵   2 

………………………………………………………………………………………..(24) 

 Variances of the estimates of these parameters are obtained as follows: 

𝑉𝑚 = 𝑉𝐹  2 …………………………………………………………………………(25)  

𝑉𝑑 = 𝑉𝐵  1 + 𝑉𝐵   2………………………………………………………………….(26)  

𝑉ℎ = 𝑉𝐹  1 + 16𝑉𝐹  2 + 1/4𝑉𝑃  1 + 1/4𝑉𝑃  2 + 4𝑉𝐵   1 + 4𝑉𝐵  2 (26) 𝑉𝑖 = 4𝑉𝐵  1 + 1/4𝑉𝐵   2 + 

16𝑉𝐹  2 ………………………………………………………………………………(27)  

𝑉𝑗 = 4𝑉𝐵  1 + 1/4𝑉𝑃  1 + 𝑉𝐵  2 + 1/4𝑉𝑃  2 ………………………………………….(28)  

𝑉𝑙 = 𝑉𝑃  1 + 𝑉𝑃  2 + 4𝑉𝐹   1 + 16𝑉𝐹  2 + 16𝑉𝐵   1 + 16𝑉𝐵  2 ………………………...(29) 

 

Where, Vm is Variance of Mean effect, Vd is Variance of Additive effect, Vh is Variance of 

Dominance effect, Vi is Variance of Additive x Additive interaction effect, Vj is Variance of 

Additive x Dominance interaction effect and Vl is Variance of Dominance x Dominance 

interaction effect  

The calculated ‘t’ value is referred to the ‘t’ table to test the significance. In each test, the 

degrees of freedom are sum of the degrees of freedom of various generations involved. When 

main or dominance effect (h) and interaction or dominance x dominance interaction effect (l) 

have similar signs + or –, the effect is beneficial and complementary. In this case selection may 

be delayed. While opposite in signs, the non-allelic interaction is duplicate type and under such 

situation bi parental mating is to be followed. If both additive and non-additive interactions 

were playing role for the inheritance of trait, then it is better to go for population improvement. 

Some of the model for GMA is as follows; 

 Hayman's Model: This is one of the earliest GMA models proposed by M. Hayman in 1954. 

It assumes that the genetic value of an individual is the sum of its sum of its additive and 

dominance genetic effects. Hayman's model allows estimation of additive, dominance, and 

epistatic genetic effects.  

Jinks and Hayman's Model: Jinks and Hayman extended Hayman's model by including 

epistatic genetic effects. This model is particularly useful for predicting the performance of 

individuals in populations with complex genetic interactions. 

 Gardner and Eberhart model: This model, also known as the Method 3 of Griffing's model, 

is used for diallel cross experiments. It provides estimates of GCA and SCA effects similar to 

Griffing's method but assumes a different genetic model.  
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Griffing's method: This model, also known as the Method 2 of Griffing's model, is used for 

diallel cross experiments. It allows for the estimation of general combining ability (GCA) and 

specific combining ability (SCA) effects. GCA represents the average additive effect of a 

parent across all crosses, while SCA represents the specific interactions between parental 

genotypes. 

 North Carolina Design II: This model is an extension of the line × tester analysis and is used 

in plant breeding programs with multiple testers. It allows the estimation of GCA and SCA 

effects, as well as tester-specific combining ability (TSCA) effects. These models and methods 

are just a few examples of the various approaches used in GMA. The choice of model depends 

on the specific breeding objectives, the genetic architecture of the traits under consideration, 

and the available resources and data. Researchers and breeders may adapt or develop new 

models based on their specific needs and research goals.  

6. Applications of Generation Mean Analysis with Case Studies Generation mean analysis 

give estimates of components of mean which in turn provide information about the 

predominant type of gene action for the economically important yield components. The 

concepts of generation mean analysis is useful to detect the nonallelic interaction. The means 

and variances of different segregating and non-segregating generations indicate the nature of 

gene action and their interaction effects (Fisher et al., 1936; Mather, 1949 and Hayman, 1958).  

7. Advancements in Generation Mean Analysis (GMA) 

7.1 Integration with Mixed Models and REML 

Traditional GMA relied on simpler linear models, but modern GMA can be integrated with 

mixed linear models (MLM) and restricted maximum likelihood (REML) methods. This allows 

more accurate estimation of genetic parameters by accounting for unbalanced data, missing 

values, or environmental effects. Traditional Generation Mean Analysis (GMA) relied on 

simpler linear models that assumed balanced data and ignored environmental variability. 

Modern GMA approaches integrate mixed linear models (MLM) and restricted maximum 

likelihood (REML) methods, which enable more accurate estimation of genetic parameters by 

effectively accounting for: 

I. Unbalanced data, common in field experiments where some generations or replicates 

may be missing. 
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II. Missing observations, which often occur due to plot loss, pest damage, or 

environmental disruptions. 

III. Environmental effects and genotype × environment interactions, improving the 

precision of estimates by separating genetic effects from environmental noise. 

IV. The use of MLM and REML also provides estimates of variance components 

associated with random effects (e.g., blocks, locations, years), which is crucial when 

conducting GMA across multiple environments or replications 

7.2 Use of Computational Tools and Software:  

Breeders now use powerful statistical software (e.g., SAS, R packages like AGD-R, asreml-R, 

lm, and lme4) for GMA, enabling simultaneous estimation of multiple traits, automatic 

calculation of standard errors, and formal hypothesis testing for scaling and joint scaling tests. 

To facilitate the implementation of GMA, several software packages have been developed. 

These packages provide user-friendly interfaces and computational tools for conducting 

generation mean analysis and related statistical procedures. Some examples include the R 

packages AGHmatrix (Amadeu et al., 2016) and AGHmatrix2 (Melo et al., 2022), which allow 

for GMA using additive genetic covariance matrices. 

(https://cran.rproject.org/web/packages/AGHmatrix/vignettes/Tutor ial_AGHmatrix.html) 

Other Software and Online Tools The other softwares tools which assist in analyzing the GMA 

are QTL Cartographer, GenStat, SAS, (agridat, GeneticsPed, and qtl.) packages of R software 

and Br Breeding View software. The website details were provided below 

(http://statgen.ncsu.edu/qtlcart/) (https://www.vsni.co.uk/software/genstat/) 

(https://www.sas.com/en_us/software/sas9.html). (https://www.r-project.org/). 

(https://www.breedingview.com/). 
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7.3 GMA Combined with Molecular Data 

Modern breeding programs increasingly overlay GMA results with QTL mapping, GWAS, or 

genomic selection data. This allows breeders to connect estimates of 

additive/dominance/epistatic effects from phenotypes with specific genomic regions — 

improving precision and understanding of complex traits. The combination of traditional GMA 

with Genomic selection in association with molecular markers are the powerful tools that can 

revolutionize the plant breeding by providing insights into genetic basis of traits and enhancing 

the selection efficiency. Genomic assisted GMA involves the genotyping of individuals of 

breeding population and QTL analysis to identify the region of genome related to trait of 

interest in combination of GMA. Statistical models are used to estimate the genetic effects and 

interactions of different alleles at specific loci. It helps in identifying the breeding programs 

and individuals with desirable marker genotypes and predicted breeding values can be selected 

for further breeding or advancement  

7.4 Multivariate GMA 

Instead of analyzing one trait at a time, recent developments allow multivariate GMA, which 

estimates genetic parameters for multiple correlated traits simultaneously — helping breeders 

understand genetic correlations and pleiotropy. The aim of multi-environment generation mean 

analysis is to ascertain the genetic and environmental effects on the performance of genotypes 

and their interaction. It helps in determining genotype by-environment interactions, which 

occur when the performance of genotypes differs across varied environments. Generation 

means are estimated by averaging the performance of genotypes across locations. The 

statistical models like AMMI (additive main effects and multiplicative interaction) and GGE 

(genotype plus genotypeby-environment interaction) models are employed to analyze the 

generation mean data. These models partition the total variation into genetic, environmental, 

and interaction components. With multi-environment generation mean analysis, genetic effects 

(main effects) of genotypes, environmental effects (main effects) of different environments, 

and the genotype-by-environment interactions can be understood by which how the genotypes 

perform under different conditions can be known and most promising genotypes for further 

breeding can be identified Software Tools for GMA 
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7.5  Bayesian GMA Approaches 

Bayesian methods have been developed to estimate GMA parameters, providing more robust 

estimates, credible intervals, and flexibility to incorporate prior information or model complex 

interactions. In recent years, Bayesian approaches have been developed to estimate genetic 

parameters in GMA, offering several important advantages over classical (frequentist) 

methods, it is having  Robust Estimates with Credible Intervals 

Unlike traditional methods that give only point estimates and confidence intervals, Bayesian 

GMA provides posterior distributions for each parameter (e.g., additive, dominance, epistatic 

effects), yielding credible intervals that more accurately reflect uncertainty — especially in 

small or unbalanced datasets common in breeding trials. It also allow to Use of Prior 

Information Bayesian frameworks allow breeders to incorporate prior knowledge (e.g., 

estimates from previous studies, literature, or expert opinion) into the analysis. This improves 

parameter estimation, especially when data are limited or traits have been studied extensively 

in related populations.Bayesian GMA can easily handle complex models, such as including 

multiple epistatic components, genotype × environment interactions, or even multi-trait 

analyses — providing greater flexibility than standard linear models. Improved Fit for Non-

Normal Data Bayesian methods are less sensitive to violations of assumptions (e.g., normality 

of residuals), which are common in phenotypic data from field experiments, making them more 

robust for real-world breeding data. E.g., Markov Chain Monte Carlo (MCMC) algorithms to 

estimate GMA parameters, Tools like JAGS, Stan, or R packages such as brms or rstanarm can 

fit Bayesian GMA models. 

7.6 Application in Diverse Crops and Environments 

Recent research extends GMA beyond major crops to underutilized or orphan crops (e.g., 

millets, pulses) and across highly variable environments — making it a critical tool in breeding 

for climate resilience and wider adaptation. 

7.7  Better Experimental Designs 

Modern GMA studies increasingly use replicated trials across multiple environments, 

improving precision and accounting for genotype × environment interaction — something 

rarely addressed in earlier GMA implementations. 
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It’s noteworthy that advancements in GMA are often closely tied to advancements in genomics, 

phenomics, statistical modeling, and computational resources. These interdisciplinary efforts 

contribute to a more comprehensive understanding of the genetic basis of complex traits and 

facilitate more efficient breeding strategies. They help in developing cultivars with enhanced 

traits to address various agricultural challenges and meet the needs of a growing population. 
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Introduction:  

A mating design is a structured method employed to plan and execute controlled crosses for 

generating progeny populations. The selection of suitable parental lines and the implementation 

of an appropriate mating strategy are essential components that influence the success of any 

plant breeding program (Khan et al., 2009). Breeders have the ability to direct the outcomes of 

such breeding efforts by carefully choosing parental combinations, controlling the frequency 

of parental use in crosses, and managing the number of progenies produced from each cross. 

These decisions are made to maximize genetic diversity, capture desirable traits, and efficiently 

meet the breeding objectives. 

These are key factors to consider while selecting an appropriate mating design in plant 

breeding or genetic studies: 

1. Predominant Type of Pollination: The type of pollination, whether the crop is primarily 

self-pollinated or cross-pollinated, influences the crossing strategy. 

2. Type of Crossing Used: Crossing can be done either artificially (manual emasculation 

and pollination) or through natural pollination (by wind or insects). 

3. Type of Pollen Dissemination: The crop may rely on wind (anemophily) or insects 

(entomophily) for pollen transfer. 

4. Presence of Male Sterility: The availability of cytoplasmic male sterility (CMS) or 

genetic male sterility (GMS) systems facilitates hybrid seed production and simplifies 

crossing. 

5. Objective: The design depends on whether the goal is breeding for varietal 

improvement or genetic studies like inheritance pattern analysis, gene mapping, or 

combining ability studies. 
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6. Size of the Population Required: The population size is determined based on the 

objectives—larger populations are often needed for quantitative trait analysis or genetic 

mapping, while smaller populations may suffice for preliminary breeding work. 

Genetic Assumptions in Mating Designs 

1. Diploid Behaviour During Meiosis: All mating designs assume diploid segregation 

during meiosis. This condition is also applicable to polyploid species if they exhibit 

disomic inheritance and function like diploids. 

2. Independent Distribution of Genes: It is assumed that genes influencing the trait of 

interest are randomly and independently distributed among the parental lines, meaning 

there is no linkage or correlation among loci. 

3. No Non-Allelic Interactions (No Epistasis): Ideally, epistatic interactions (interactions 

between genes at different loci) should be absent. However, in certain mating designs, 

such as triple test crosses and diallel crosses, epistasis can be detected and estimated if 

present. 

4. No Multiple Alleles at Trait-Controlling Loci: The loci governing the character are 

assumed to carry only two alleles (biallelic), making genetic analysis simpler. Multiple 

alleles at the same locus complicate the interpretation. 

5. Absence of Reciprocal Differences: Ideally, the direction of the cross (whether Parent 

A is the male or female) should not affect the results. Some mating designs test for these 

differences, and corrections can be applied if they are present. 

6. Use of Homozygous Lines in Diallel Crosses: Diallel crosses are best conducted with 

homozygous parents, as heterozygosity can complicate the genetic interpretation. 

However, some designs can still accommodate heterozygous parents, though with more 

complex analysis. 

7. No Genotype × Environment Interaction (G × E): Mating design analyses assume stable 

gene expression across environments. If G × E interactions exist, the material should 

be evaluated across multiple environments to estimate the extent of this interaction and 

its influence on trait expression. 
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Importance of Mating Designs in Plant Breeding 

1. Understanding Genetic Control of Traits: Mating designs help in revealing the genetic 

basis of the traits, such as the type of gene action involved (additive, dominance, or 

epistasis) and the heritability of the character. This knowledge guides the choice of 

breeding strategies. 

2. Development of Breeding Populations: They are used to create diverse breeding 

populations that form the foundation for selection and improvement, ultimately leading 

to the development of superior varieties. 

3. Estimation of Genetic Gain: Mating designs enable breeders to predict the potential 

genetic improvement (genetic gain) that can be achieved through selection in a 

particular population or breeding scheme. 

4. Evaluation of Parental Lines: Through systematic crossing and analysis, mating designs 

help assess the breeding value and combining ability of the parents, aiding in the 

identification of the most promising lines for further breeding efforts. 

Major Mating Designs in Plant Breeding and Genetics 

As outlined in key studies (Griffing, 1956b; Kearsey & Pooni, 1996; Hallauer et al., 2010; 

Acquaah, 2012), several mating designs are widely used in plant breeding and genetic studies. 

The selection of a mating design depends on the study objectives, biological characteristics of 

the crop, and available resources (time, space, and cost). 

• Bi-Parental Matings 

• Polycross 

• Top Cross Design 

• North Carolina Designs (I, II, III) 

• Diallel Design 

• Line × Tester Design 
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Bi-Parental Matings:  

Bi-parental mating is a fundamental controlled crossing strategy used in plant breeding and 

quantitative genetics for developing segregating populations and for analysing the inheritance 

of quantitative and qualitative traits. It is regarded as the simplest form of mating design, often 

referred to as paired crossing (Mather, 1982). 

In a bi-parental mating design: 

• A breeder randomly selects a set of n individuals from a genetically diverse population. 

• These selected individuals are paired in two-parent combinations, such that each pair 

contributes to producing a full-sib family. 

• The number of unique full-sib families produced from n individuals is ½n, assuming 

each plant is used once in a pairwise cross (Acquaah, 2012). 

• Controlled pollination is performed to produce true full-sib progenies, minimizing 

external contamination and selfing in cross-pollinated crops. 

Genetic Analysis 

The progenies of these crosses are grown and evaluated for one or more traits. The phenotypic 

variance (Vp) observed in the progenies is partitioned using Analysis of Variance (ANOVA) 

into: 

• Between-family variance (σ²B): Reflects genetic differences between different parental 

combinations; mainly accounts for additive (A) and dominance (D) variance 

components. 

• Within-family variance (σ²W): Captures the segregation variance within a family, 

contributed by recombination and residual environmental variance. 

Thus, the total variance is expressed as: 

VP=Vbetween families+Vwithin families+VenvironmentV_P = V_{between\ families} + V_{within\ 

families} + V_{environment}  

(Hill et al., 1998). 
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Genetic Variance Components Estimated 

Bi-parental mating helps estimate: 

• Additive genetic variance (VAV_A): The cumulative effect of individual alleles. 

• Dominance variance (VDV_D): The interaction between alleles at a locus. 

• Environmental variance (VEV_E): The part of the variation due to non-genetic factors. 

While epistasis is not directly estimated in simple bi-parental mating, further generations (F₂, 

F₃, recombinant inbred lines) can be used to dissect more complex genetic interactions. 

Advantages 

• Simplicity: Easy to implement, especially in self-pollinated crops. 

• Creation of Segregating Populations: Forms the foundation for generating F₂ 

populations, backcross populations, and advanced mapping populations like 

recombinant inbred lines (RILs) or doubled haploids (DHs). 

• Genetic Mapping: The resulting populations are ideal for QTL mapping, as they capture 

recombination events between two distinct genetic backgrounds. 

• Estimate Heritability: Can be used to estimate broad-sense and narrow-sense 

heritability. 

Limitations 

• Only two parents contribute genetic diversity, limiting the allelic variation present in 

the segregating population. 

• Complex gene interactions (epistasis) may not be fully captured. 

• Requires careful selection of parental lines to ensure sufficient genetic contrast. 

Applications 

• Development of mapping populations for the study of quantitative trait loci (QTL). 
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• Genetic analysis of key characteristics such as drought tolerance, resistance to diseases, 

or yield. 

• Early-stage breeding to combine desirable traits from two elite parents. 

Polycross Mating Design:  

Polycross mating is a natural open-pollination breeding method designed for species that are 

naturally cross-pollinated. It allows the random inter-mating of multiple genotypes, usually 

cultivars or clones, within an isolated crossing block, ensuring that progeny result from 

uncontrolled yet genetically meaningful crosses. 

Concept and Procedure 

• A set of selected parental lines (cultivars or clones) is planted together in an isolated 

area, preventing pollen contamination from outside sources. 

• These entries cross-pollinate naturally, through agents such as wind or insects, within 

the block. 

• Each progeny family is derived from seeds collected from one known female parent, 

but the male parent is unknown and randomly selected from the block. This results in 

half-sib families, since the female parent is known but the male parent could be any 

other plant within the crossing population. 

• The term "polycross" specifically refers to the situation where a line or clone undergoes 

outcrossing with multiple other lines in a poly-parental setup. 

Key Applications 

• Development of synthetic cultivars in forage crops and vegetatively propagated plants. 

• Used in recurrent selection programs for recombining desirable genes across several 

cycles. 

• Helps generate broad-based genetic populations for further selection. 

Genetic Implications 
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• Progeny from each female line in a polycross are half-sibs, having a common maternal 

parent and varying paternal contributions. 

• Variance among progeny can be partitioned into: 

o Between-family variance: Reflecting the differences among maternal parents' 

genetic contributions. 

o Within-family variance: Representing the segregation of traits due to the genetic 

diversity of the pollen donors. 

• The design primarily estimates General Combining Ability (GCA), which reflects 

additive genetic effects. GCA is critical in determining the potential of a parent to pass 

on favorable traits to its offspring. 

Suitability and Target Crops 

Polycross is particularly well-suited for: 

• Obligate cross-pollinators, where controlled hand-pollination is impractical. 

• Perennial and vegetatively propagated species, where the same clones can be used over 

multiple years. 

• Examples of crops where polycross designs are commonly used: 

o Forage grasses and legumes 

o Sugarcane 

o Sweet potato 

o Forest trees and shrubs 

o Some tropical fruit trees 

Genetic Analysis 

The progeny from polycross mating can be analyzed using ANOVA, where the variation can 

be decomposed as follows (Falconer and Mackay, 1996): 
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VP=Vbetween maternal parents+Vwithin families+VEV_P = V_{between\ maternal\ parents} 

+ V_{within\ families} + V_E  

where: 

• Vbetween maternal parentsV_{between\ maternal\ parents} represents GCA variance. 

• Vwithin familiesV_{within\ families} accounts for segregation and environmental 

variance within each family. 

• VEV_E is the environmental variance. 

Estimation of heritability (especially broad-sense heritability) becomes possible through such 

variance partitioning. 

Advantages 

• Simpler and more practical for crops where controlled crosses are laborious. 

• Efficient for evaluating a large number of genotypes simultaneously. 

• Useful for the early screening of parental materials for additive genetic effects. 

• Promotes broad genetic recombination, improving the genetic base of breeding 

populations. 

Limitations 

• Unknown paternal contribution complicates the estimation of specific combining 

ability (SCA). 

• Possible unequal pollen contribution from different male parents. 

• Environmental factors may affect pollen dissemination and crossing success. 

Top Cross design 

The top cross design is a simple and effective mating approach where selected lines, clones, or 

inbred plants are crossed with a common tester parent, which could be a variety, inbred line, 

or hybrid with a well-known genetic background. This design was first introduced in maize 

breeding by Jenkins and Brunsen (1932) and later termed "top cross" by Tysdal and Grandall 
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in 1948. The main aim of this design is to assess the general combining ability (GCA) of new 

lines, helping breeders identify whether a line has favorable additive genes that contribute 

positively to hybrid performance. In this design, the selected lines are crossed with the tester 

in a one-way manner (n × 1 crosses), and the resulting progenies form half-sib families, sharing 

the common tester as the male parent. Top cross is especially useful in the preliminary 

evaluation of inbred lines or exotic germplasm, requiring less crossing effort and simple data 

analysis compared to more complex designs like diallel crosses. While it efficiently estimates 

additive genetic effects (GCA), it does not provide information on specific combining ability 

(SCA) or gene interactions. This design is widely used in crops like maize and sorghum for 

early screening of inbred lines before advancing them to single-cross or multi-parent hybrid 

testing. 

North Carolina Designs:  

The North Carolina designs, also called biparental crosses or biparental matings, were 

developed by Comstock and Robinson (1948, 1952) to study genetic variation in plant 

breeding. These designs are used in the F₂ or later generations of a cross between two pure lines 

with contrasting traits. In this method, plants are randomly selected from the population and 

crossed in a specific pattern to generate progenies. 

North Carolina designs are versatile tools that help breeders estimate key genetic components 

like additive variance (from individual gene effects) and dominance variance (from gene 

interactions). These estimates are made by analyzing half-sib families, where offspring share 

one parent (either the male or female) but have different other parents. 

There are three main types of North Carolina mating designs — Design I, Design II, and Design 

III (Stuber, 2004; Acquaah, 2007). Each design follows a unique crossing pattern suited for 

specific genetic analyses. A common feature of all these designs is that the parents are 

randomly chosen from the base F₂ population, meaning they represent the genetic diversity of 

the population and are not pre-selected for specific traits. 

These mating designs are widely used for partitioning genetic variance and understanding the 

inheritance of quantitative traits, helping breeders in making effective selections during crop 

improvement programs. 
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Diallel Cross Analysis:  

Diallel cross analysis is a breeding method where a group of selected parents are crossed in all 

possible combinations, and the resulting progenies are evaluated. This design helps breeders to 

assess the combining ability of the parents, meaning how well a parent contributes to its 

offspring’s performance. This method is especially useful for studying polygenic traits in self-

pollinated crops. The diallel analysis methods for such traits were first developed by Jinks 

(1954) and Hayman (1954). 

Types of Diallel Cross 

1. Full Diallel 

In a full diallel, all possible crosses are made in both directions, meaning each parent is used 

as both male and female. 

• Full diallel with parents: Includes parents, direct crosses, and reciprocals. Total entries 

= p² (where p is the number of parents). 

• Full diallel without parents: Includes only direct and reciprocal crosses, excluding 

parents. Total entries = p(p−1). 

2. Half Diallel 

In a half diallel, crosses are made in only one direction (either male or female is fixed). 

• Half diallel with parents: Includes direct crosses and parents. Total entries = p(p+1)/2. 

• Half diallel without parents: Includes only direct crosses, excluding parents. Total 

entries = p(p−1)/2. 

Approaches of Diallel Analysis 

Hayman’s Graphical Approach: 

A visual method to estimate genetic components like dominance and additive effects. 
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Griffing’s Numerical Approach (1956): 

A statistical method that estimates General Combining Ability (GCA) and Specific Combining 

Ability (SCA). Griffing outlined four methods depending on whether parents and reciprocals 

are included: 

• Method 1: p² entries (direct, reciprocals, and parents); used to estimate reciprocal 

effects. 

• Method 2: p(p+1)/2 entries (direct crosses and parents); used when reciprocal 

differences are negligible. Most commonly used. 

• Method 3: p(p−1) entries (direct and reciprocal crosses); used when parents are 

excluded due to self-incompatibility. 

• Method 4: p(p−1)/2 entries (direct crosses only); simplest form. 

Combining Ability Models 

There are two genetic models for analyzing combining ability: 

• Fixed effect model (Model I): Parents are a fixed set of lines; conclusions apply only to 

these specific lines. 

• Random effect model (Model II): Parents are considered random samples from a larger 

population; results apply to the whole population. 

Genetic Information from Diallel Analysis (Griffing’s Approach) 

In Griffing's approach to diallel analysis, the genetic variation observed among the progenies 

from different crosses is separated into two main components: 

• Variation among half-sib families: This represents the General Combining Ability 

(GCA) and reflects the additive genetic effects. GCA indicates how well a parent 

contributes its favorable genes to its offspring on average across all crosses. 

• Variation among full-sib families: This provides the Specific Combining Ability 

(SCA), which measures the non-additive genetic effects like dominance and epistasis. 
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SCA captures the unique performance of specific parent combinations that cannot be 

explained by GCA alone. 

Through the estimation of GCA and SCA variances, breeders can understand the relative 

importance of additive and dominance gene actions controlling the trait. High GCA variance 

suggests that additive effects are more important, while high SCA variance indicates 

dominance or interaction effects. This genetic information helps breeders choose suitable 

parents and decide whether selection or hybrid breeding would be more effective for trait 

improvement. 

Griffings diallel analysis: Data input format (method 2) 

This dataset (GriffingData2) contain data on 8 parents which are crossed in diallel fashion (Half 

diallel with parents). The experimental design was a RCBD with 4 replicates (blocks). It can 

be retrieved from R (DiallelAnalysisR package) using following code 

write_xlsx(GriffingData2," GriffingData2.xlsx"). Following table shows the sample of input 

data set.  

Cross1 Cross2 Rep Yield 

1 1 1 104.86 

1 2 1 88.66 

1 3 1 109.76 

1 4 1 128.1 

1 5 1 128.36 

1 6 1 74.4 

1 7 1 91.82 

1 8 1 48.08 

. . . . 

. . . . 

. . . . 

. . . . 

. . . . 

2 7 1 84.16 

2 8 1 96.92 

3 3 1 77.94 

7 8 4 112.46 

8 8 4 81.48 
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####################Diallel Analysis###################  

###############Required packages############  

install.packages("DiallelAnalysisR")  

library(DiallelAnalysisR)  

#################Importing data#############  

Griffing1Data2<-read.table("clipboard", h=T)  

attach(Griffing1Data2)  

str(Griffing1Data2) library(readxl)  

Griffing1Data2 <- read_excel("Griffing1Data2.xlsx")  

View(Griffing1Data2)  

##############################Griffings diallel analysis#########  

Diallel Analysis with Griffing's Aproach Method 2 & Model 1  

Griffing1Data2 <- Griffing( y = Yield , Rep = Rep , Cross1 = Cross1 , Cross2 = Cross2, data 

= GriffingData2 , Method = 2, Model = 1 )  

names(Griffing1Data2)  

Griffing1Data2  

Griffing1Data2Means <- Griffing1Data2$Means  

Griffing1Data2ANOVA <- Griffing1Data2$ANOVA  

Griffing1Data2Genetic.Components <- Griffing1Data2$Genetic.Components  

Griffing1Data2Effects <- Griffing1Data2$Effects  

Griffing1Data2StdErr <- as.matrix(Griffing1Data2$StdErr)  

sink("Griffing1Data2.txt")  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 113 - 
 

Griffing( y = Yield , Rep = Rep , Cross1 = Cross1 , Cross2 = Cross2, data = GriffingData2 , 

Method = 2, Model = 1 )  

names(Griffing1Data2)  

Griffing1Data2  

Griffing1Data2Means <- Griffing1Data2$Means  

Griffing1Data2ANOVA <- Griffing1Data2$ANOVA  

Griffing1Data2Genetic.Components <- Griffing1Data2$Genetic.Components  

Griffing1Data2Effects <- Griffing1Data2$Effects  

Griffing1Data2StdErr <- as.matrix(Griffing1Data2$StdErr)  

sink() 

Diallel Analysis with Griffing's Aproach Method 2 & Model 2  

Griffing2Data2 <- Griffing( y = Yield , Rep = Rep , Cross1 = Cross1 , Cross2 = Cross2 , data 

= GriffingData2 , Method = 2 , Model = 2 )  

names(Griffing2Data2)  

Griffing2Data2  

Griffing2Data2Means <- Griffing2Data2$Means  

Griffing2Data2ANOVA <- Griffing2Data2$ANOVA  

Griffing2Data2Genetic.Components <- Griffing2Data2$Genetic.Components  

sink("Griffing2Data2.txt")  

Griffing2Data2 <- Griffing( y = Yield , Rep = Rep , Cross1 = Cross1 , Cross2 = Cross2 , data 

= GriffingData2 , Method = 2 , Model = 2 )  

names(Griffing2Data2)  

Griffing2Data2  
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Griffing2Data2Means <- Griffing2Data2$Means  

Griffing2Data2ANOVA <- Griffing2Data2$ANOVA  

Griffing2Data2Genetic.Components <- Griffing2Data2$Genetic.Components  

sink() 

Line × Tester Analysis: 

The Line × Tester analysis is an extension of the topcross design, where instead of using just 

one tester, multiple testers are used to evaluate the combining ability of several lines. This 

method was first proposed by Kempthorne in 1957. In this design, a set of selected lines (female 

parents) is crossed with a set of testers (male parents) in a one-to-one manner, producing a total 

of f × m = fm crosses, where f is the number of lines and m is the number of testers (Sharma, 

2006). For example, if there are 10 lines and 5 testers, the total number of hybrids would be 

50. 

Line × Tester analysis is considered a simple and efficient mating design that enables breeders 

to estimate both General Combining Ability (GCA) and Specific Combining Ability (SCA). 

Unlike the topcross design, which only produces half-sib families, the Line × Tester method 

generates both full-sibs and half-sibs, allowing for the evaluation of both additive and non-

additive genetic effects. This helps breeders in selecting the best parents and identifying the 

best hybrid combinations for further breeding and crop improvement programs. 

Characteristics of a tester  

The most desirable tester is one which provides maximum information about the performance 

of a line in cross combination under different environmental conditions.  

• Broad genetic base  

• Wider adaptability  

• Low yield potential  

• Low performance for other traits  
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Components of genetic variance in Line × Tester Analysis  

Line × Tester Analysis partitions the variation of single crosses into three fractions viz., 

variation among male parents, variation among female parents and variation due to interaction 

of male and female parents. 

 

Genetic Information from Line × Tester Analysis 

The Line × Tester analysis provides valuable insights into the genetic control of traits by 

partitioning the total variation into: 

• General Combining Ability (GCA): Reflects the additive genetic variance (VA) and 

represents the average performance of a line or tester across all its crosses. It is 

estimated from the covariance among half-sibs (Cov. HS). 

• Specific Combining Ability (SCA): Represents the dominance or non-additive genetic 

variance (VD) and shows the unique performance of a specific cross beyond what is 

expected from the GCA of the parents. SCA is estimated as the difference between the 

covariance among full-sibs and twice the covariance among half-sibs (Cov. FS – 2 Cov. 

HS). 

Thus, the genetic variances are related as: 

• Additive variance (VA) ≈ GCA variance 

• Dominance variance (VD) ≈ SCA variance 

Through these estimates, breeders can determine whether additive effects (which can be fixed 

through selection) or dominance effects (exploited in hybrids) are more important for a 
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particular trait. This helps in selecting the best parents and in deciding whether to follow a 

breeding strategy focused on selection or hybrid development. 

Line × Tester Analysis: Input data format  

This dataset (LTdata) contain data on 5 lines with 3 testers. The experimental design was a 

RCBD with 4 replicates (blocks). It can be retrieved from R (LxT function, agricolae package) 

using following code write_xlsx(LxT," LTdata.xlsx"). Following table shows the sample of 

input data set.  

replication line tester yield 

1 1 6 74.4 

2 1 6 70.86 

3 1 6 60.94 

4 1 6 68 

. . . . 

. . . . 

. . . . 

. . . . 

4  7 89.46 

1  8 91.78 

2  8 84.82 

3  8 69.92 

4  8 81.48 

 

####################LinexTesterAnalysis###################  

###############Required packages############  

install.packages("agricolae")  

library(agricolae)  

#################Importing data#############  

LTdata<-read.table("clipboard", h=T)  

attach(LTdata)  

str(LTdata)  

library(readxl)  

LTdata <- read_excel("LTdata.xlsx")  

View(LTdata)  
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#################LinexTesterAnalysis#############  

output2<-with(LTdata,lineXtester(replication, line, tester, yield))  

sink("output2.txt")  

with(LTdata,lineXtester(replication, line, tester, yield))  

output2 
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1. Introduction 

Understanding the interrelationships among multiple traits and their combined impact on a 

target trait, such as crop yield, is crucial in agricultural research. Traditional correlation 

analysis, while useful, fails to distinguish between direct and indirect relationships. Path 

coefficient analysis (PA), introduced by Sewall Wright (1920), overcomes this limitation by 

partitioning correlation coefficients into direct and indirect effects, offering clearer insight into 

causal relationships among traits. Dewey and Lu (1959) later adapted this method for plant 

breeding, marking the beginning of its widespread use in agriculture. 

2. Concept and Scope of Path Coefficient Analysis 

PA is a form of multiple regression analysis that quantifies the magnitude and direction of 

effects among variables using standardized partial regression coefficients. The major strength 

of PA lies in its ability to dissect a correlation into its causal components. According to Lleras 

(2005), PA enables researchers to distinguish whether a variable’s influence on the dependent 

variable is direct or mediated through other variables. 

In plant breeding, PA plays a critical role in identifying traits that significantly influence yield 

and should therefore be emphasized in selection programs (Singh & Narayanan, 1993). 

3. Historical Development and Theoretical Foundations 

The path analysis technique was initially developed for biological problems in genetics and 

evolution. Wright’s (1920) original use involved partitioning correlation coefficients to 

understand heritable traits in guinea pigs. Subsequently, Blalock (1961) and Duncan (1966) 

extended PA to social sciences, enabling causal modelling in non-experimental designs. 

In agriculture, Dewey and Lu (1959) applied PA to examine yield components in crested 

wheatgrass, setting a precedent for later studies in cereals, legumes, and oilseed crops. 

4. Assumptions and Requirements of Path Analysis 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 119 - 
 

Path analysis relies on several statistical assumptions: 

i. Linearity and additivity: All causal relationships are linear and additive. 

ii. No multicollinearity: Predictor variables should not be highly correlated. 

iii. Recursive models: Feedback loops are not permitted. 

iv. Causal closure: All important variables influencing the dependent variable must be 

included. 

Failing to meet these assumptions can bias estimates of path coefficients, leading to misleading 

conclusions (Mahapatra et al., 2020). 

5. Types of Path Coefficients 

Path coefficients can be derived under different conditions: 

• Phenotypic Path Coefficients: Based on phenotypic correlations. 

• Genotypic Path Coefficients: Based on genotypic correlations and more stable across 

environments. 

• Environmental Path Coefficients: Derived from environmental correlations and help 

separate genotype-by-environment effects. 

Among these, genotypic path coefficients are preferred in breeding programs due to their 

stronger reflection of inheritable traits (Singh and Chaudhary, 1979). 

6. Methodological Framework 

6.1 Data Collection and Preparation 

Replicated trials with genetically diverse genotypes are essential for reliable estimation. Traits 

measured should include both yield and contributing characteristics such as plant height, 

biomass, and harvest index. 

6.2 Statistical Procedure 

i. Estimate variance and covariance matrices 

ii. Compute correlation coefficients 

iii. Calculate path coefficients using the formulae 
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PA represents a standardized method of partitioning the partial regression coefficient, 

distributing the correlation coefficient into various measures of direct and indirect impacts of 

a set of independent variables on the dependent variable, which is yield. It is also known as 

cause-and-effect relationship. If a character is determined by the correlated characters, a path 

diagram must be formulated. Thus, we get a set of simultaneous equations as mentioned below: 

𝑅(𝑋1, 𝑌) = 𝑎 + 𝑟(𝑋1, 𝑋2)𝑏 + 𝑟(𝑋1, 𝑋3)𝑐 

𝑅(𝑋2, 𝑌) = 𝑟(𝑋1, 𝑋2)𝑎 + 𝑏 + 𝑟(𝑋2, 𝑋3)𝑐 

𝑅(𝑋3, 𝑌) = 𝑟(𝑋1, 𝑋3)𝑎 + 𝑟(𝑋2, 𝑋3)𝑏 + 𝑐 

Direct and indirect effects of characters using path coefficient analysis: The direct and indirect 

effects both at genotypic and phenotypic levels were estimated by taking quantitative response 

as dependent variable, using path coefficient analysis (Wright, 1921), (Dewey and Lu, 1959). 

More generalized case, the following equations were formed and solved simultaneously for 

estimating the various direct and indirect effects. 

r1y = P1yr11 + P2yr12 + P3yr13 …+ Pnyr1n 

r2y = P1yr21 + P2yr22 + P3yr23 …+ Pnyr2n 

rny = P1yrn1 + P2yrn2 + P3yrn3 …+ Pnyr3n 

where 1, 2, …,  = independent variables;  = dependant variable; r1y, r2y, …, rny = Coefficient of 

correlation between casual factors 1 to  on dependent character ; P1y, P2y, …, Pny = Direct effect 

of character 1 to  on character . Considering the simultaneous equations given above can be 

matrix notation as: 𝐶𝐵 = 𝐴, 

[
 
 
 
 

1 𝑟12 𝑟13 … 𝑟1𝑛

𝑟21
𝑟31

⋮

1
𝑟32

⋮

𝑟23 …
1
⋮

…
⋱

𝑟2𝑛
𝑟3𝑛

⋮
𝑟𝑛1 𝑟𝑛2 𝑟𝑛3 … 1 ]

 
 
 
 

(

  
 

𝑃1𝑦

𝑃2𝑦

𝑃3𝑦

⋮
𝑃𝑛𝑦)

  
 

=

(

 
 

𝑟1𝑦

𝑟2𝑦

𝑟3𝑦

⋮
𝑟𝑛𝑦)

 
 

 

Then, 𝐵 = 𝐶−1𝐴, where 𝐶−1 =

[
 
 
 
 
𝑐11 𝑐12 𝑐13 … 𝑐1𝑛
𝑐21
𝑐31

⋮

𝑐22
𝑐32

⋮

𝑐23 …
𝑐33

⋮

…
⋱

𝑐2𝑛
𝑐3𝑛

⋮
𝑐𝑛1 𝑐𝑛2 𝑐𝑛3 … 𝑐𝑛𝑛]

 
 
 
 

 

Direct effects were as follows: 

𝑃1𝑦 = ∑ 𝑐1𝑖𝑟𝑖𝑦
𝑘
𝑖=1 , 𝑃2𝑦 = ∑ 𝑐2𝑖𝑟𝑖𝑦

𝑘
𝑖=1 , …, 𝑃𝑛𝑦 = ∑ 𝑐𝑛𝑖𝑟𝑖𝑦

𝑘
𝑖=1  
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Residual effect, which measures the contribution of characters not considered, was obtained 

as: 

𝑃𝑟𝑦 = √1 − (∑𝑃𝑖𝑦

𝑛

𝑖=1

𝑟𝑖𝑦) 

where, 𝑃𝑛𝑦= direct effect of 𝑋𝑛 on 𝑌, and 𝑟𝑛𝑦 = correlation coefficient of 𝑋𝑛 on 𝑌. 

6.3 Software Tools 

i. R Packages: variability, agricolae 

ii. SAS, SPSS, Genstat: Also support path analysis via correlation and regression modules 

The R code provided in Bharamappanavara (2023) simplifies the process for both replicated 

and unreplicated data, showcasing its utility in real-time breeding datasets. 

6.4 Dataset and R Code for Replicated Data Path Analysis 

Replicated data (trait names shortened for clarity) is given, that is, dependent variable: Grain 

yield (GY) and independent variables: DFF (Days to Fifty percent Flowering), PH (Plant 

Height), PL (Panicle Length), PW (Panicle Weight), HI (Harvest Index), GY (Grain Yield), etc. 

 

Genotypes Rep DFF PH PL PW HI TW MILL HRR GY 

G1 R1 122 104.6 21.2 81 42.59 22 86.42 30.75 61.2 

G1 R2 120.4 90.4 22.4 86 45.51 20 67.48 39.32 65.3 

G1 R3 120 98.6 22.8 79 43.2 20 70.48 42.32 61.3 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

G10 R1 124.6 94.6 20.7 100 54.48 13 80.57 35.9 71.8 

G10 R2 128 87.2 20.2 106 59.06 12 61.29 31.5 74.3 

G10 R3 133 87.6 19.8 111 55.92 12 64.29 30.57 68.5 

 

R Code: 

library(variability) #Required packages 

library(variability) 
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#Importing data into R studio # 

vardata<-read.delim("clipboard") 

attach(vardata) 

str(vardata) 

 

# Alternate way of importing... 

library(readxl) 

vardata <- read_excel("vardata.xlsx") 

View(vardata) 

 

#Estimation of genetic parameters#  

genvar <- gen.var(vardata[3:11], vardata$Genotypes, vardata$Replication) 

genvar 

sink("genvar.txt") 

print(genvar) 

 

#Genotypic and phenotypic correlations# 

gencor <- geno.corr(vardata[3:11], vardata$Replication)  

gencor  

sink("gencor.txt")  

print(gencor)  

phecor<-pheno.corr(vardata[3:11], vardata$Replication)  

phecor  

vardata$Genotypes  

vardata$Genotypes  

sink("phecor.txt")  

print(phecor) 

 

#Genotypic and phenotypic path coefficients#  

genpath<-geno.path(vardata[11], vardata[3:10], vardata$Genotypes, vardata$Replicati

on) 

genpath 

sink("genpath.txt") 

print(genpath) 

phepath<-pheno.path(vardata[11], vardata[3:10], vardata$Genotypes, vardata$Replicat

ion) 

phepath 

sink("phepath.txt") 

print(phepath) 

 

#Path analysis for unreplicated data#  

#Importing data set using following code or import from excel#  

path=read.delim("clipboard") 

attach(path) 

str(path) 

 

#load required package#  

require(agricolae) 
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#Let us calculate correlation co-efficient# 

x<-path[,c(1,2,3,4,5,6,7,8)] #here we have to define independent variables  

y<-path [,9] #here we have to define dependent variable#  

cor.y<-correlation(y,x)$correlation 

cor.x<-correlation(x)$correlation 

 

#Let us calculate calculate direct and indirect effects# 

pathresult<-path.analysis(cor.x,cor.y) 

 

#Let us save analysed data in table.csv# 

write.table(pathresult,file="pathresults.csv", sep=",", col.names=NA, qmethod="doub

le") 

 

7. Interpretation of Results 

• High direct effect & high correlation: Trait is a true contributor; prioritize in selection. 

• Low direct effect & high correlation: Correlation is likely due to indirect effects. 

• High direct effect & low correlation: Other traits suppress the trait’s potential impact. 

Residual effect estimates indicate the unexplained variation. If high, it suggests missing 

variables in the model. 

8. Applications in Recent Research 

8.1 Cereals 

• Rice: Traits like panicle length, grains per panicle, and harvest index showed high direct 

effects on grain yield (Chakravorty et al., 2021). 

• Wheat: Flag leaf area and biological yield demonstrated substantial direct and indirect 

effects (Kumar et al., 2022). 

8.2 Pulses and Legumes 

• Chickpea: Pod number and biomass yield are influential traits (Rani et al., 2020). 

• Soybean: Studies emphasize indirect effects of plant height via branches and pods 

(Kaur et al., 2018). 
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8.3 Oilseeds and Fiber Crops 

• Sunflower: Head diameter and seed filling duration positively affect yield (Mohana et 

al., 2020). 

• Cotton: Boll weight and number per plant are crucial for selection (Zhou et al., 2021). 

9. Challenges and Limitations 

• Violation of assumptions: Linear additive models may not hold in polygenic systems. 

• Omitted variable bias: Unmeasured traits can distort results. 

• Overfitting: Including too many predictors can complicate interpretation. 

Despite these, PA remains invaluable when applied cautiously with appropriate domain 

knowledge. 

10. Future Directions 

The integration of PA with machine learning and multi-trait selection indices is emerging. 

Bayesian path analysis and structural equation modelling (SEM) offer robust alternatives that 

handle latent variables and model complexity. 

For instance: 

• Bayesian SEM models allow uncertainty quantification (Lee et al., 2019). 

• Genome-wide PA is helping breeders link genomic regions to yield components (Rani 

et al., 2023). 

11. Conclusion 

Path coefficient analysis remains a cornerstone in quantitative genetics and breeding research. 

By decomposing correlation into meaningful components, it aids breeders in pinpointing 

critical traits for selection. However, it requires careful design, proper data, and prudent 

interpretation. With advancements in statistical software and computational biology, the power 

and precision of path analysis in agronomy continue to expand. 

 

  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 125 - 
 

References 

Bharamappanavara, M. (2023). Path Coefficient Analysis. In Rathod et al., Advanced 

Statistical Tools and Techniques for Biometrical Data Analysis, ICAR-IIRR, pp. 35–42. 

Blalock, H.M. (1961). Causal Inferences in Nonexperimental Research. University of North 

Carolina Press. 

Chakravorty, S., Bera, S. and Das, S. (2021). Path coefficient and multivariate analysis for yield 

and its component traits in rice. Journal of Genetics, 100(21). DOI: 10.1007/s12298-020-

00903-7. 

Dewey, D.R. and Lu, K. (1959). A correlation and path-coefficient analysis of components of 

crested wheatgrass seed production. Agronomy Journal, 51(9), 515–518. DOI: 

10.2134/agronj1959.00021962005100090002x. 

Duncan, O.D. (1966). Path analysis: Sociological examples. American Journal of Sociology, 

72(1), 1–16. 

Kaur, A., Sangha, M.K. and Kaur, G. (2018). Correlation and path coefficient analysis in 

soybean [Glycine max (L.) Merrill] under different environmental conditions. Legume 

Research, 41(1), 96–101. https://doi.org/10.18805/LR-3785. 

Kumar, A., Verma, R.P.S., Singh, M., Sharma, S.K. and Kumar, R. (2022). Dissecting direct 

and indirect contributions of yield-related traits in bread wheat (Triticum aestivum L.) 

using correlation and path coefficient analysis. Molecular Breeding, 42, 123–134. 

https://doi.org/10.1007/s11032-021-01215-0. 

Lee, S.Y., Song, X.Y. and Lee, J.C.K. (2019). Bayesian Structural Equation Modelling with 

Applications in Health and Behavioural Sciences. Wiley Series in Probability and 

Statistics. ISBN: 978-1-119-42322-2. 

Lleras, C. (2005). Path analysis. In Encyclopedia of Social Measurement, Vol. 3, pp. 25–30. 

Elsevier. 

Mahapatra, S.K., Das, S., Mohanty, S. and Dash, A. (2020). Path analysis and its application in 

agriculture. International Journal of Agriculture and Plant Science, 2(2), 1–3. 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 126 - 
 

Mohana, T., Singh, D., Singh, M. and Sharma, S. (2020). Genetic variability, correlation and 

path coefficient analysis in sunflower (Helianthus annuus L.). Helia, 43(72), 97–108. 

https://doi.org/10.2298/HEL2072097M. 

Rani, M., Singh, R.K., Kumar, P., Yadav, R.K. and Sharma, P. (2023). Application of genome-

wide path coefficient analysis for dissecting the genetic basis of grain yield in rice (Oryza 

sativa L.). Theoretical and Applied Genetics, 136, 52. 

Singh, P. and Narayanan, S.S. (1993). Biometrical Techniques in Plant Breeding. Kalyani 

Publishers. 

Singh, R.K. and Chaudhary, B.D. (1979). Biometrical Methods in Quantitative Genetic 

Analysis. Kalyani Publishers. 

Wright, S. (1920). The relative importance of heredity and environment in determining the 

piebald pattern of guineapigs. Proceedings of the National Academy of Sciences, 6(6), 

320–332. 

Zhou, L., Wang, L., Zhang, J., Zeng, H., Wang, X. and Yu, S. (2021). Genomic prediction of 

fiber yield in cotton using path coefficients. The Plant Genome, 14(3), e20100. 

https://doi.org/10.1002/tpg2.20100. 

  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 127 - 
 

Genotype-By-Environment Interaction and Stability: Concepts, 

Analysis, And Applications 

Ravi V. Mural  

Department of Agronomy, Horticulture & Plant Science, Berg Agricultural Hall 208, Box, 

2100A, Brookings, SD 57007 

Email: ravi.mural@sdstate.edu 

 

Introduction 

The phenotype of a plant is determined by the complex interplay of its genotype (G) and the 

environment (E), with the potential for significant genotype-by-environment interaction (G×E 

or GEI). While the genetic makeup of an individual remains largely constant, the expression of 

traits can vary widely depending on environmental conditions. This means that the same 

genotype may exhibit different phenotypes in different settings, a phenomenon that lies at the 

heart of plant breeding and crop improvement.  

Understanding G×E is crucial because it complicates the identification of superior genotypes. 

A variety that excels in one environment may perform poorly in another, not necessarily due to 

genetic inferiority, but because of specific adaptation to local conditions. Thus, breeders must 

evaluate genotypes across multiple environments to select those with either broad or specific 

adaptation, depending on breeding goals. 

Key Definitions: G×E, Stability, Adaptability, and Plasticity 

In plant breeding and crop research, evaluating the performance of genotypes across multiple 

environments is fundamental. However, performance is rarely uniform across locations or 

seasons due to the complex interplay between genotype and environment. To interpret and 

harness this variation, we rely on four closely related but conceptually distinct terms: 

genotype-by-environment interaction (G×E), stability, adaptability, and plasticity. Each 

concept offers a different lens through which genotype performance can be assessed and 

understood: 

• Genotype-by-environment interaction (G×E) refers to the phenomenon in which the 

performance of genotypes changes relative to each other across environments. In other 

words, the effect of a genotype is not consistent in all conditions. If the ranking of 

genotypes shifts significantly from one environment to another, a strong G×E 

interaction is present. This interaction can be crossover, where genotype rankings 
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change across environments, or non-crossover, where performance changes in 

magnitude but not in rank. G×E complicates selection because a top-performing 

genotype in one location may not maintain superiority elsewhere. As a result, G×E is 

the underlying reason why plant breeders conduct multi-environment trials (METs). 

• Stability refers to the consistency or predictability of a genotype's performance across 

diverse environments. A stable genotype shows minimal fluctuation in traits like yield 

despite environmental variation and contributes little to the G×E interaction. 

• There are two main types of stability: 

• Static (biological) stability implies constant performance across environments, 

regardless of changes in environmental productivity. This type is ideal for traits 

like grain quality, where uniformity is preferred. However, it may not be 

desirable for yield if it results in low and unresponsive performance. 

• Dynamic (agronomic) stability, which is more relevant for yield and other 

quantitative traits, allows genotypes to respond positively to favorable 

environments while maintaining their relative superiority across conditions. A 

dynamically stable genotype tends to perform well in both high- and low-

yielding environments and consistently ranks among the top performers. 

While stability helps identify reliable genotypes, a stable genotype is not necessarily 

high yielding—it may simply perform predictably across sites.. 

• Adaptability captures the capacity of a genotype to perform well in specific or 

diverse environments. Unlike stability, which concerns performance variance, 

adaptability emphasizes performance level. A genotype with broad adaptability 

maintains high yield across many environments, while a genotype with specific 

adaptability excels in a limited set of environmental conditions (e.g., drought-prone or 

saline soils). In practice, adaptability is a more practical goal for breeders than stability 

alone, especially when targeting specific agroecological zones or production 

constraints. Notably, a genotype can be stable yet poorly adapted (yielding consistently 

low) or highly adapted to one environment but unstable overall. 

• Plasticity on the other hand, refers to a genotype’s phenotypic responsiveness to 

environmental conditions. It is the ability of a genotype to modify its growth, 

development, or yield in response to changes in the environment. Plasticity is not 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 129 - 
 

inherently good or bad—it simply describes the degree to which a genotype can adjust 

its phenotype. High plasticity may be desirable in some cases (e.g., adjusting flowering 

time under different daylengths), but undesirable in others where consistency is 

preferred (e.g., grain quality traits). Importantly, plasticity is a trait-level property and 

not a direct measure of performance or superiority. It is often studied using reaction 

norms or slope-based models that capture how trait values change along an 

environmental gradient. 

These four concepts are conceptually interconnected. G×E is the foundation—it explains why 

performance varies. Stability focuses on minimizing that variation, adaptability aims to exploit 

it in the most beneficial way, and plasticity describes how traits shift in response to it. 

Understanding and distinguishing among these terms is essential when designing breeding 

strategies, analyzing MET data, or making recommendations for cultivar release.  

To help clarify the distinctions, the following table provides a side-by-side comparison of these 

four terms: 

Attribute G×E 

Interaction 

Stability Adaptability Plasticity 

Definition 

/ Focus 

Variation in 

genotype 

performance 

across 

environments 

Consistency in 

genotype 

performance 

across 

environments 

Performance level 

relative to 

environmental 

conditions 

Phenotypic 

flexibility in 

response to 

environmental cues 

Interpret

ation 

Inconsistency 

in genotype 

rankings; 

underlies both 

stability and 

adaptability 

Predictable 

performance; may 

be static (minimal 

change) or 

dynamic 

(predictable 

change) 

Genotype fit to 

broad or specific 

environments; high 

performance when 

conditions are 

optimal 

Ability to adjust 

traits like flowering 

or height; may be 

adaptive or non-

adaptive 

Goal in 

Breeding 

Understand 

environmental 

sensitivity and 

manage 

variability 

Ensure reliable 

performance 

across locations 

and years 

Match genotypes to 

broad or specific 

target populations 

of environments 

(TPEs) 

Enhance resilience, 

flexibility, or stress 

responsiveness 

When 

Desired 

When 

targeting 

diverse or 

highly 

variable 

environments 

When consistent 

yield is required 

across 

unpredictable 

climates 

When breeding for 

favorable, stress-

prone, or high/low 

input zones 

When breeding for 

climate resilience, 

stress tolerance, or 

variable growing 

conditions 
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Measure

ment / 

Indicators 

ANOVA 

interaction 

terms, mixed 

models, 

AMMI, GGE 

biplots 

Regression slope ≈ 

1, low deviation, 

AMMI stability 

value, Shukla’s 

variance, Kang’s 

yield index 

Mean performance, 

Finlay–Wilkinson 

regression slope (>1 

= high adaptability), 

yield response 

Reaction norms, 

slope of trait vs. 

environment, trait 

variance across 

environments 

Example 

Use Case 

Identifying 

stable or 

specifically 

responsive 

genotypes for 

regional 

recommendati

ons 

Selecting cultivars 

for multi-location 

or multi-year trials 

in variable climates 

Recommending 

varieties tailored for 

optimal or stress-

prone regions 

Selecting genotypes 

that shift flowering 

under drought or 

delay emergence 

under cold 

 

Experimental Design and Measurement 

To assess stability and G×E interaction, breeders conduct multi-environment trials 

(METs) across different locations, years, or seasons. Common designs such as randomized 

complete block and lattice designs are used, particularly when evaluating a large number of 

genotypes. These trials help control environmental variation and generate the data necessary 

for robust statistical analysis of G×E and genotype stability.  

Stability analysis relies on statistical models to partition phenotypic variance into 

components attributable to genotype, environment, and their interaction. The basic model is: 

Pij=μ+Gi+Ej+(GE)ij 

Where,  

Pij is the phenotype of genotype i in environment j,  

μ is the overall mean,  

Gi is the effect of the i
th genotype,  

Ej is the effect of the j
th environment, and  

(GE)ij is the interaction effect. 
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Table: Example of Genotype by environment interaction  

 

Genotype   Environment   Difference 

    E1  E2  (E effect) 

G1    a  c  Δ1 = c - a  

G2    b  d  Δ2 = d – b 

 

Difference (G effect) Δ3 = b – a (in E1), Δ4 = d – c (in E2) 

 

GE interaction = (Δ2 - Δ1) = (Δ4 – Δ3) or (d – b) – (c – a) = (d – c) – (b – a) 

    = (Δ1 + Δ4) = (Δ2 + Δ3) or (c – a) + (d – c) = (d – b) + (b – a). 

 

The genotype effect, Δ3, represents the difference between genotypes in environment E1 and 

Δ4 represents the difference between genotypes in environment E2. The environmental effect, 

Δ1, represents change attributable to environments for genotype G1 and Δ2 is the change 

attributable to environments for genotype G2.  

Total effect (T) = G + E + GE = (d - a) or GE = T – G – E. 

Types of G×E Interaction: There are generally two forms of G×E interaction: crossover and 

non-crossover interaction. Crossover interaction occurs when the rank order of genotype 

performance changes from one environment to another. For example, Genotype A may 

outperform Genotype B in one location but not in another. This type of interaction can pose 

major challenges to breeding programs aimed at wide adaptation. Non-crossover interaction, 

on the other hand, occurs when performance changes in magnitude but not in rank, for instance, 

a high-performing genotype remains the top performer, although the yield level fluctuates. 

Causes of G×E Interaction: G×E occurs when different genotypes respond differently to 

changes in environmental conditions. These interactions make it challenging to predict how a 

genotype will perform across diverse environments. Understanding the causes of G×E is 

critical for breeders aiming to develop varieties with broad adaptability or targeted performance 

in specific conditions.  

• Abiotic Stresses: Abiotic stresses, such as drought, heat, cold, or nutrient deficiencies 

are major contributors to G×E interaction. When environmental factors deviate from 
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optimal levels, plants experience stress, and genotypes often differ in their ability to 

tolerate or respond to such conditions. For example, one genotype may maintain yield 

under drought by closing its stomata early, while another may fail to limit water loss 

and experience a drop in productivity. Similarly, some genotypes may exhibit 

symptoms of iron or boron deficiency in low-fertility soils, while others remain 

unaffected due to more efficient nutrient uptake mechanisms.  

In many cases, these differences are genetically controlled and may be as simple as 

a single gene conferring tolerance to a particular stress. This explains why two 

otherwise similar genotypes may perform quite differently under stress but similarly in 

optimal environments.  

At the cellular level, abiotic stress often triggers the accumulation of reactive 

molecules capable of damaging proteins, nucleic acids, and membranes. The degree of 

damage and the plant’s ability to mitigate it can differ substantially among genotypes, 

contributing to observed interaction effects. 

• Biotic Stresses: Biotic factors, such as diseases and insect pests, also drive G×E 

interactions. Resistance or susceptibility to pathogens often varies among genotypes. 

For instance, a sorghum line resistant to leaf blight may outperform others in 

environments with high disease pressure but show no advantage in disease-free 

environments. These differences in resistance can lead to "crossover" interactions, 

where the best-performing genotype in one environment is not the best in another.  

Thus, understanding these causes helps breeders predict genotype performance 

under various conditions and informs the development of cultivars with either broad or 

targeted adaptation. 

Adaptive Plasticity and Genotypic Variation due to Quantitative Nature of G×E: A major 

contributor to genotype × environment interaction is phenotypic plasticity—the ability of a 

genotype to modify its traits in response to environmental stimuli. This plasticity allows plants 

to adjust their growth, development, or physiology depending on environmental conditions, 

such as drought, nutrient availability, or temperature extremes. For instance, some maize 

genotypes may flower earlier under drought to escape stress, while others maintain fixed 

flowering times regardless of moisture availability.  
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Plasticity is closely tied to adaptability, a quantitative trait influenced by numerous genes. The 

extent and sophistication of a genotype’s plastic responses determine whether it exhibits stable 

performance (i.e., low sensitivity to environmental variation) or high adaptability (i.e., strong 

positive response to improved conditions). Genotypes with high plasticity tend to perform well 

across variable environments, whereas those with low plasticity may show more consistent but 

less responsive behavior.  

Importance in Plant Breeding: The presence of G×E interaction underscores the importance 

of multi-environment testing (MET) in crop improvement programs. Without evaluating 

genotypes across diverse environments, it is impossible to determine whether superior 

performance is due to genuine genetic advantage or favorable environmental conditions. MET 

helps in selecting genotypes that are either broadly adapted — performing well across most 

environments — or specifically adapted — excelling in targeted environmental niches. 

Stability analysis is therefore often coupled with G×E analysis to quantify how consistent a 

genotype's performance is across sites or seasons. 

Implications for Breeding and Stability Analysis: GEI presents both challenges and 

opportunities in plant breeding. One of its primary consequences is a reduction in trait 

heritability, as it increases the environmental influence on phenotypic expression and 

confounds the partitioning of genotypic and environmental effects. This weakens the 

correlation between phenotypic and genotypic values, making it more difficult to accurately 

identify superior genotypes, especially when crossover interactions cause genotypic rankings 

to shift across environments.  

In the context of breeding, GEI complicates selection decisions and reduces the effectiveness 

of evaluating genotypes in a single environment. Multi-environment trials (METs) become 

essential to distinguish true genetic potential from environmental noise. Breeders must then 

choose between two strategic approaches: (1) selecting for broad adaptation, where genotypes 

maintain high mean performance and stability across environments, or (2) pursuing specific 

adaptation, where genotypes are tailored to excel in particular target environments, even if their 

performance elsewhere is lower.  

The magnitude of G×E also influences breeding program design and resource allocation. 

Developing separate breeding populations for different regions can yield greater genetic gains 

in the presence of strong interaction effects, particularly when genotypic rankings vary 
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drastically across locations. However, this approach is resource intensive. Conversely, selecting 

for general adaptation across multiple environments is more cost-effective, but may result in 

slower genetic progress due to reduced selection pressure for local adaptation.  

To address these challenges, breeders have developed and adopted a suite of statistical tools 

collectively known as stability analysis, which includes both univariate and multivariate 

methods. These tools help quantify G×E and identify genotypes that are either stable (i.e., 

consistently performing across environments) or specifically adapted to certain environments. 

Stability analysis enhances the efficiency of selection decisions, enabling breeders to more 

effectively develop cultivars suited to variable or targeted environments.  

Ultimately, understanding the quantitative nature of G×E and its implications helps breeders 

make informed decisions about trial design, selection strategies, and resource investment—

ensuring that breeding programs are both scientifically sound and strategically aligned with 

environmental variability. 

Statistical Methods for Analyzing G×E and Stability: Understanding and quantifying G×E 

interactions is essential in modern plant breeding. G×E complicates the selection of superior 

genotypes by reducing trait heritability and masking genotypic effects. Stability analysis 

provides tools to address these challenges, offering insight into genotype performance 

consistency across environments and guiding selection strategies based on either broad or 

specific adaptation. 

A variety of statistical approaches are used to dissect G×E and assess stability: 

• Foundational Models: ANOVA and Mixed Models: The most basic approach to 

analyzing G×E interaction is through analysis of variance (ANOVA) or linear mixed 

models, which partition total phenotypic variation into components attributable to 

genotype (G), environment (E), and their interaction (G×E). These models can 

determine whether G×E interaction is statistically significant, but they do not explain 

the nature of the interaction or the behavior of individual genotypes across 

environments. 

To address these limitations, breeders turn to more advanced statistical frameworks that provide 

deeper insights into genotype stability, adaptability, and responsiveness. 
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• Regression-Based Approaches: Regression-based models—such as Finlay–Wilkinson 

and Eberhart–Russell—assess stability by regressing genotype performance on 

environmental means. A regression slope near 1 with low deviation from regression 

indicates average stability and broad adaptability. Genotypes with slopes < 1 tend to be 

more stable but less responsive to favorable environments, while slopes > 1 indicate 

high responsiveness but reduced stability. Eberhart–Russell also adds a stability 

variance term to quantify unpredictable behavior. 

• Variance-Based Indices: Several variance-based indices quantify the contribution of 

individual genotypes to the overall G×E interaction:  

• Wricke’s ecovalence measures each genotype’s contribution to the interaction 

sum of squares.  

• Shukla’s stability variance estimates stability while accounting for 

environmental heterogeneity. 

• The coefficient of variation (CV) provides a simple measure of performance 

variability. 

These indices help breeders distinguish between genotypes that are stable across 

environments and those that show high sensitivity or specific adaptation. 

• Multivariate Models and Biplot Analysis: Advanced multivariate models are widely 

used for visualizing and interpreting G×E interactions: 

• AMMI (Additive Main Effects and Multiplicative Interaction) combines 

ANOVA with principal component analysis (PCA) to decompose G×E into 

interpretable components. Biplots generated from AMMI help identify 

genotypes with general or specific adaptability—those near the origin are 

considered stable, while those farther away may be specifically adapted to 

certain environments. 

• GGE (Genotype + G×E) Biplot focuses on both genotype main effects and 

G×E interaction. It reveals “which-won-where” patterns and helps define mega-

environments, making it a valuable tool for regional variety recommendations. 

• Stability Indices and Univariate Metrics: Stability indices provide breeders with 

simplified metrics to rank genotypes based on both mean performance and consistency: 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 136 - 
 

• Kang’s yield-stability statistic combines mean performance and stability 

variance to rank genotypes for selection. For example, it combines yield and a 

stability measure (e.g., Shukla’s variance) into a single index. 

• Other widely used indices include: 

• Wricke’s ecovalence: measuring each genotype’s contribution to 

interaction sum of squares or the G×E, 

• Shukla’s stability variance (adjusted for environmental effects) 

estimates stability while accounting for environmental heterogeneity, 

• Coefficient of variation (CV) provides a simple measure of performance 

variability. 

These univariate metrics are especially helpful in practical breeding decisions when a 

single index is needed to compare multiple genotypes across diverse environments. 

Modern Tools and Practical Applications: Modern breeding increasingly relies on linear 

mixed models with random effects, Best Linear Unbiased Predictors (BLUPs), Bayesian 

approaches, and reaction norm models, which model genotype performance across 

environmental gradients (e.g., temperature, rainfall). These methods allow breeders to predict 

performance in untested environments, improving selection accuracy and facilitating 

genomic selection pipelines. 

Such models are especially valuable in large-scale breeding programs where the incorporation 

of environmental covariates improves the understanding of genotype responsiveness under 

complex, real-world conditions. 

Software and Computational Tools: The R programming language offers a powerful platform 

for G×E and stability analysis, supported by numerous packages, including: 

• metan: for MET analysis, stability indices, and AMMI/GGE visualization 

• agricolae: for traditional ANOVA and index computation 

• lme4 and asreml: for linear and mixed model fitting 

• GGEbiplot and GGEbiplotGUI: for visual biplot construction 

• stability: for comprehensive stability analysis (Finlay–Wilkinson, Eberhart–Russell, 

Wricke’s ecovalence, Shukla’s variance, AMMI, and GGE) 
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These tools allow breeders to process large datasets efficiently, compute stability statistics, and 

generate diagnostic plots (such as AMMI and GGE biplots) for interpreting genotype behavior 

across diverse conditions. 

Integration of Stability and G×E Analysis in Breeding: In practical breeding programs, G×E 

interaction and stability must be considered together. The ideal genotype often combines high 

mean yield with low G×E interaction, indicating both performance and predictability across 

environments. However, breeding objectives may sometimes prioritize specific adaptation, 

particularly in marginal or stress-prone environments, where a genotype may consistently 

outperform others despite high G×E interaction.  

Tools such as Kang’s rank-sum, AMMI stability value (ASV), and multi-environment 

trial (MET) models help quantify and compare these trade-offs, enabling breeders to make 

context-specific decisions. 

Practical Implications in Varietal Selection and Deployment: Stability and G×E analysis 

are crucial not only for selecting superior genotypes but also for defining mega-environments, 

guiding regional testing, and informing extension recommendations. These analyses help 

match varieties to their target population of environments (TPE), enhancing productivity and 

resilience under variable climatic and agronomic conditions.  

By integrating traditional and modern tools, breeders can now more effectively account 

for G×E and stability in selection pipelines—supporting the development and deployment of 

varieties tailored to diverse and changing environments. 

Conclusion: Genotype-by-environment interaction and stability analysis are foundational to 

modern plant breeding. They enable breeders to identify genotypes that are not only high 

yielding but also reliable across diverse and changing environments. By integrating robust 

experimental designs, advanced statistical methods, and powerful computational tools, 

researchers can effectively dissect G×E, quantify stability, and make informed 

recommendations for cultivar release and deployment. Mastery of these concepts and methods 

is essential for geneticists, agronomists, and data analysts working to deliver resilient, high-

performing crops in the face of environmental variability. 

  



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 138 - 
 

 

R Code for Genotype by environment interaction and Stability analysis with metan 

 

#install.packages("metan") 

library(metan) 

#install.packages("ggplot2") 

library(ggplot2) 

#install.packages("writexl") 

library(writexl) 

#install.packages("GGEBiplots") 

library(GGEBiplots) 

options(max.print = 10000) 

#################data import#################################### 

stabdata<-read.table("clipboard", h=T, stringsAsFactors = TRUE) 

attach(stabdata) 

str(stabdata) 

options(max.print = 10000) 

 

library(readxl) 

stabdata <- read_excel("C:/Users/Lenovo/Desktop/UHS Bagalkot/Stability/stabdata.xlsx") 

 

View(stabdata) 

str(stabdata) 

library(GGEBiplots) 

############################# factors with unique levels #################### 

stabdata$ENV <- factor(stabdata$ENV , levels=unique(stabdata$ENV )) 

stabdata$GEN <- factor(stabdata$GEN, levels=unique(stabdata$GEN)) 

stabdata$REP <- factor(stabdata$REP, levels=unique(stabdata$REP)) 

str(stabdata) 

########################### Data inspection and cleaning functions############### 

inspect(stabdata, plot=TRUE) 

find_outliers(stabdata, var=GY, plots=TRUE) 

find_outliers(stabdata, var=HM, plots=TRUE) 

remove_rows_na(stabdata) 

replace_zero(stabdata) 

find_text_in_num(stabdata$PHT) 

find_text_in_num(stabdata$YLD) 

 

######################### data analysis ################################## 

###################### descriptive stats ################################ 

desc_stat(stabdata) 

desc_stat(stabdata, stats="all") 

ds <- desc_stat(stabdata, stats="all")  

ds 

write_xlsx(ds, "ds.xlsx") 

histplot<-desc_stat(stabdata, hist = TRUE)  

######################## mean performances ############################## 

####################### mean of genotypes ############################# 
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mg <- means_by(stabdata, GEN) 

mg 

View(mg) 

######################### mean of environmnets ####################### 

me <- means_by(stabdata, ENV) 

me 

View(me) 

########### mean performance of genotypes across environments ########### 

mge <- stabdata %>%  

  group_by(ENV, GEN) %>% 

  desc_stat(GY, HM, stats="mean") 

mge 

View(mge) 

#####################two-way table########################## 

twgy<-make_mat(stabdata, GEN,ENV,GY) 

twgy 

twhm<-make_mat(stabdata, GEN,ENV,HM) 

twhm 

make_long(twgy) 

make_long(twhm) 

#########Exporting mean performances################# 

sheets <- list("Genmean" = mg, "Envmean" = me, "Genmeaninenv"= mge, 

"twowaygy"=twgy,"twowayhm"=twhm) 

write_xlsx(sheets,"Mean peformances.xlsx") 

############### plotting performance across environments ################ 

## GY 

GY1 <- ge_plot(stabdata, ENV, GEN, GY) 

GY1 

GY2 <- ge_plot(stabdata, ENV, GEN, GY, type=2) 

GY2 

arrange_ggplot(GY1, GY2) 

## HM 

HM1 <- ge_plot(stabdata, ENV, GEN, HM) 

HM1 

HM2 <- ge_plot(stabdata, ENV, GEN, HM, type=2) 

HM2 

arrange_ggplot(HM1, HM2) 

######################Genotype-environment winners#################### 

win <- ge_winners(stabdata, ENV, GEN, resp = everything()) 

win 

ranks <- ge_winners(stabdata, ENV, GEN, resp = everything(), type = "ranks") 

ranks 

 

sheets <- list("winner" = win, "winranks" = ranks) 

write_xlsx(sheets,"GenEnvwinners.xlsx") 

########################## fixed effect models ############################# 

#########Individual  and Joint anova ########### 

indaov<-anova_ind(stabdata,ENV,GEN,REP,GY) 
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indaov 

indaovout<-indaov$GY$individual 

indaovout 

 

jointaov<-anova_joint(stabdata,ENV,GEN,REP,GY) 

jointaov 

jointaovout<-jointaov$GY$anova 

jointaovout 

sheets <- list("indanova" = indaovout, "jointanova" = jointaovout) 

write_xlsx(sheets,"indandjointanova.xlsx") 

## Bartlett test  

bartlett.test(stabdata$GY~stabdata$ENV, data = stabdata) 

######################## stability analysis:ANOVA Based Models 

########################### 

ann <- Annicchiarico(stabdata, ENV, GEN, REP, GY) 

print(ann) 

eco <- ecovalence(stabdata, ENV, GEN, REP, GY) 

print(eco) 

Shu <- Shukla(stabdata, ENV, GEN, REP, GY) 

print(Shu) 

 

sink("anovabasedstability") 

Annicchiarico(stabdata, ENV, GEN, REP, GY) 

print(ann) 

ecovalence(stabdata, ENV, GEN, REP, GY) 

print(eco) 

Shukla(stabdata, ENV, GEN, REP, GY) 

print(Shu) 

sink() 

######################## Regression based stability analysis: Eberhart and Russell's 

regression mode ########################### 

reg <- ge_reg(stabdata,ENV,GEN,REP,GY) 

reg 

regaov<-reg$GY$anova 

regaov 

regpara<-reg$GY$regression 

regpara 

plot(reg) 

 

sheets <- list("regressionanova"=regaov, "regressions"=regpara) 

write_xlsx(sheets,"regressionStabilitytp.xlsx") 

 

#########################non-parametric stability models############### 

super <- superiority(stabdata, ENV,GEN, GY ) 

print(super) 

fox <- Fox (stabdata, ENV,GEN, GY ) 

print(fox) 
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##########AMMI based stability analysis ############## 

ammiout<-performs_ammi (stabdata,ENV,GEN,REP,GY) 

ammiout 

ammianova<-ammiout$GY$ANOVA 

ammianova 

ammipca<-ammiout$GY$PCA 

ammipca 

ammimeans<-ammiout$GY$MeansGxE 

ammimeans 

ammimodel<-ammiout$GY$model 

ammimodel 

##################AMMI indexes######################### 

ammiindex<-ammi_indexes(ammiout) 

ammiindex 

ammiindout<-ammiindex$GY 

ammiindout 

sheets <- list("ammianova" = ammianova, "ammipca" = ammipca, "ammimodel"=ammimodel, 

"ammimeans"= ammimeans, "ammiindex"=ammiindout) 

write_xlsx(sheets,"ammistabilitytp.xlsx") 

#AMMI biplots# 

ammiplot1<-plot_scores(ammiout, x.lab = " Grain Yield") 

ammiplot1 

ammiplot2<-plot_scores(ammiout, type = 2, polygon = TRUE) 

ammiplot2 

ammiplot2<-plot_scores(ammiout,  type = 2,col.env = "blue", 

col.gen = transparent_color(),col.segm.env = "orange", 

highlight = c("G1", "G2"),col.highlight = "darkcyan",axis.expand = 1.5) 

ammiplot2 

ammiplot3 <- plot_scores(ammiout, type = 4) 

ammiplot3 

arrange_ggplot(ammiplot1, ammiplot2, ammiplot3, tag_levels = "a", nrow = 1) 

 

################ ammi based on weighted average of absolute scores 

################################# 

waasammi <- waas(stabdata,ENV,GEN,REP,GY) 

waasammi 

waasanova<-waasammi$GY$ANOVA 

waasanova 

waasmodel<-waasammi$GY$model 

waasmodel 

wabs<- ammi_indexes(waasammi) 

wabsout<-wabs$GY 

wabsout 

sheets <- list("waasanova" = waasanova, "wabsout"=wabsout) 

write_xlsx(sheets,"waasammi.xlsx") 

################weighted average of absolute scores plots 

################################# 

wassplot1 <- plot_scores(waasammi, type = 3) 
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wassplot1 

 

wassplot2 <- plot_scores(waasammi, type = 2, polygon = TRUE) 

wassplot2 

 

#########GGE Model based stability analysis ########## 

ggemodel<-gge(stabdata, ENV, GEN, GY) 

predict(ggemodel) 

plot(ggemodel)  ####A basic biplot 

##########Biplot2:Mean performance vs stability##### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "genotype") 

plot(ggemodel, type = 2) 

##########Biplot3: Which won where############# 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "symmetrical") 

plot(ggemodel, type = 3) 

##########Biplot4:Descriminativeness and representativeness############# 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "3") 

plot(ggemodel, type = 4) 

##########Biplot5: Examine an environment################ 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "3") 

plot(ggemodel, type = 5, sel_env = "E10") 

##########Biplot6: Ranking environments################### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "2") 

plot(ggemodel, type = 6) 

##########Biplot7: Examine a genotype################### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "1") 

plot(ggemodel, type = 7, sel_gen = "G8") 

##########Biplot8: Ranking  genotype################### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "1") 

plot(ggemodel, type = 8) 

##########Biplot8: Ranking  genotype################### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp = "1") 

plot(ggemodel, type = 8) 

##########Biplot9: compare two genotypes genotype################### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp="3") 

plot(ggemodel, type = 9, sel_gen1 = "G8",sel_gen2 = "G10") 

##########Biplot10: Relationship among environment################### 

ggemodel<-gge(stabdata, ENV, GEN, GY, svp="2") 

plot(ggemodel, type = 10) 

 

stabdatagge <- make_mat(data_ge, GEN, ENV, GY) %>% round(2) 

stabdatagge 

GGEBiplot(Data = stabdatagge) 

 

##################Multi-trait stability index################## 

model<-waasb(stabdata, ENV, GEN, REP,resp = c(GY, HM), random = "all",mresp = c("h, 

l"),wresp = c(60, 40)) 

get_model_data(model, what = "WAASBY") 
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index <- mtsi(model, index = "waasby", mineval = 0.7, verbose = FALSE) 

print(index) 

plot(index) 

###########################Wrapper function for stability analysis############# 

gestats<-ge_stats(stabdata,ENV,GEN,REP,GY) 

gestats 

gestatsout<-gestats$GY 

gestatsout 

write_xlsx(gestatsout,"gestats.xlsx") 

######If ranks only to be extracted############## 

ranksp <- get_model_data(gestats, "ranks")  

ranksp 

##########Spearman's rank correlation matrix between the computed stability indexes## 

corplot<-corr_stab_ind(gestats, plot = FALSE, stats = "all" ) 

corplot 

corplot2<-corr_stab_ind(gestats, plot = FALSE, stats = "ammi" ) 

corplot2 

corplot3<-corr_stab_ind(gestats, plot = FALSE, stats = "par" ) 

corplot3 

corplot4<-corr_stab_ind(gestats, plot = FALSE, stats = "nonpar" ) 

corplot4 

#####################Correlation coefficients with p values############### 

coef_all <- corr_coef(data_ge2) 

print(coef_all) 

corplota<-plot(coef_all) 

corplota 

granum<-corr_plot(data_ge2) 

granum 

 

###################Estimation of path coefficients################### 

pathcoef<-path_coeff(data_ge2, resp = KW) 

pathcoef<-path_coeff(data_ge2, resp = KW, brutstep = TRUE) 

path1<-path_coeff(data_ge2, resp = KW, pred = c(PERK, EP, NKR, PH, 

NR,TKW,EL,CD,ED)) 

path1 
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Introduction: 

Bioinformatics is a scientific discipline that combines computer science, mathematics, 

statistics, chemistry, and engineering to analyze, explore, integrate, and utilize data from 

biological sciences in research and development. It focuses on the storage, retrieval, analysis, 

and interpretation of biological data through the use of computer-based software and tools. 

History of Bio-informatics: 

• Bioinformatics began to take shape in the mid-1990s. From 1965 to 1978, Margaret O 

Dayhoff developed the first database of protein sequences, which was published yearly 

in a series titled “Atlas of Protein Sequence and Structure.”  

• By 1977, DNA sequences had started to gradually appear in the literature, making it 

increasingly common to predict protein sequences by translating sequenced genes 

rather than through direct protein sequencing.  

• In 1980, there was a sufficient number of DNA sequences to warrant the creation of the 

first nucleotide sequence database, GenBank, at the National Center for Biotechnology 

Information (NCBI) in the USA. NCBI became the main provider of databank 

information.  

• The European Molecular Biology Laboratory (EMBL) was established at the European 

Bioinformatics Institute (EBI) in 1980, aimed at collecting, organizing, and distributing 

nucleotide sequence data along with related information.  

• In 1984, the National Biomedical Research Foundation launched the Protein 

Information Resource (PIR).  

• The DNA Data Bank was initiated by GemonNet in Japan in 1986. All these databanks 

work collaboratively and frequently share data.  

• The management and analysis of the rapidly growing sequence data necessitated the 

development of new software and statistical tools. 
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Components of bioinformatics: There are three components of bioinformatics such as Data, 

Database and Database mining tools.  

Data: 

✓ Nucleic Acid Sequences 

• Raw DNA Sequences 

• Genomic sequence tags (GSTs) 

• cDNA sequences 

• Expressed sequence tags (ESTs) 

• Organellar DNA sequences 

• RNA Sequences 

✓ Protein sequences 

✓ Protein structures 

✓ Metabolic pathways 

✓ Gel pictures 

Databases: A database is a large compilation of data related to a particular subject, such as 

nucleotide sequences or protein sequences, in a digital format. They serve as the digital 

repository for this information.  

Nucleotide Sequence Databases: These are the major nucleotide sequence databases mostly 

used by several researchers, and other scientific community to study and apply different 

bioinformatics tools. The most commonly used databases are given below: 

NCBI GenBank: www.ncbi.nlm.nih.gov/GenBank 

EMBL: www.ebi.ac.uk/embl 

DDBJ: www.ddbj.nig.ac.jp 

The three databases are updated and shared daily, ensuring consistent accession numbers. 

There are no legal restrictions on the use of these databases; however, some sequences in the 

database are patented. 

DDBJ (DNA Database of GenomNet, Japan) was established in 1986 through a collaboration 

with EMBL and GenBank. It is produced, maintained, and distributed by the National Institute 

http://www.ncbi.nlm.nih.gov/GenBank
http://www.ebi.ac.uk/embl
http://www.ddbj.nig.ac.jp/
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of Genetics in Japan, and sequence submissions can be made using a web-based data 

submission tool. 

Protein data bases: 

Protein databases are essential resources in bioinformatics and structural biology, providing 

comprehensive collections of protein sequence and structure information. These databases 

serve as valuable tools for researchers, enabling them to analyze, compare, and study proteins 

across various organisms. These databases play crucial roles in various research areas, 

including: Structural biology and protein folding studies, Drug discovery and design, 

Evolutionary analysis, Functional genomics. In proteomics research researchers can access 

these databases through web interfaces or programmatically via APIs, enabling integration with 

various bioinformatics tools and workflows. Regular updates and curation efforts ensure that 

these databases remain current and reliable sources of protein information for the scientific 

community. Some of the important protein database include SWISSPROT, Protein Information 

Resource (PIR) and TrEMBL etc. 

Data mining tools: Database mining tools in bioinformatics are essential for extracting 

valuable information from large biological datasets. These tools help researchers to analyze 

and interpret complex data, identify patterns, and generate hypotheses. Some of the tool are as 

follows: 

Analysis Tool Function 

BLAST (NCBI,USA) Used for analyzing sequence data and identifying 

homologous sequences 

ENTREZ (NCBI, USA) Serves as a gateway to literature (abstracts), sequence, and 

structure databases 

DNAPLOT (EBI, UK) A tool for aligning sequences 

LOCUS LINK (NCBI, 

USA) 

Provides information on homologous genes 

LIGAND (GenomNet, 

Japan) 

A chemical database that enables searches for enzyme 

combinations and connects to all publicly available databases 

BRITE (GenomNet, 

Japan) 

A database for bio-molecular relations conveying information 

on transmission and expression, linking to all publicly 

accessible databases 

TAXONOMY 

BROWSER (NCBI, USA) 

Offers taxonomic classifications for various species along 

with genetic details 

STRUCTURE Supports the Molecular Modelling Database (MMDB) and 

tools for structural analysis 
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BLAST (Basic Local Alignment Search Tool)  

BLAST is a fundamental algorithm in bioinformatics used for comparing biological sequence 

(DNA, RNA, Protein) information. It rapidly identifies regions of similarity between 

nucleotide or protein sequences by comparing a query sequence against a database. BLAST 

employs heuristic methods to find short matches and extend them, making it efficient for large-

scale analyses. The algorithm provides statistical significance measures, such as E-values, to 

assess match quality. BLAST has various specialized programs for different sequence types 

and comparisons. It is widely used in genomics, molecular biology, and evolutionary studies 

for tasks like gene identification, function prediction, and exploring evolutionary relationships 

between organisms. The BLAST is a 3 step process. 

➢ Word search method: Sequence is filled in order to remove complexity regions. Each 

of them prepares a set of query words (w) from the query sequence length I. Fixed 

length for proteins and nas are selected as 1 and 3. 

➢ Identification exact word method: This alignment then searches the database for the 

neighbourhood word. Words having the score value equal or greater than 

neighbourhood score threshold (T) are taken for alignment. This conserved alignments 

are called as hits. 

➢ Maximum pair segment alignment: In this process it extends the possible match as an 

ungapped alignment in both the direction that stops at maximum value. The matching 

criteria significance is matched by E value criteria. If E value < 10-13 then the alignment 

is significant. 

QTL Analysis: Application of QTL IciMapping 

QTL mapping (Quantitative Trait Locus mapping) is a technique used in genetics and breeding 

to identify genomic regions associated with quantitative traits. Here are some key concepts 

related to QTL mapping: 

1. Quantitative Traits: Quantitative traits are the traits that exhibit continuous variation and 

are influenced by multiple genetic and environmental factors. Examples include yield, height, 

weight, and protein content. Unlike qualitative traits (e.g., flower color), which show discrete 

variation, quantitative traits are controlled by multiple genes and are influenced by  

environmental interactions (Lander and Botstein, 1989; Li et al., 2007). 
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2. QTL: A Quantitative Trait Locus (QTL) refers to a genomic region that contains one or 

more genes affecting the expression of a quantitative trait. Each QTL can have an impact on 

the variation of the trait, contributing to its phenotypic variation. QTLs are typically identified 

by statistically linking genetic markers (e.g., molecular markers) with the phenotypic variation 

observed in a population (Li et al., 2007; Wang et al., 2014). 

3. Mapping Populations: QTL mapping requires the use of mapping populations, which are 

created by crossing individuals with contrasting phenotypic traits. The most commonly used 

mapping populations are bi-parental populations, such as F2 or recombinant inbred lines 

(RILs), generated from two parental lines with differing traits. These populations provide the 

genetic variation necessary for QTL identification (Lander and Botstein, 1989). 

4. Molecular Markers: Molecular markers are DNA markers used to track genetic variation 

across individuals in a mapping population. They are typically short DNA sequences that can 

be easily assayed and genotyped. Common types of molecular markers include Single 

Nucleotide Polymorphisms (SNPs), Simple Sequence Repeats (SSRs), and Amplified 

Fragment Length Polymorphisms (AFLPs). These markers are genotyped across the mapping 

population and used to associate specific marker alleles with the phenotypic variation observed 

in the population (Meng et al., 2015; Lander and Botstein, 1989; Li et al., 2007).  

5. Linkage Analysis: Linkage analysis is a statistical method used to detect the association 

between genetic markers and quantitative traits. It evaluates the co-segregation of genetic 

markers and phenotypic variation in the mapping population to infer the presence of QTLs. 

Various methods, such as interval mapping, composite interval mapping, and multiple QTL 

mapping, are employed to identify QTLs and estimate their effects. 

6. LOD Score: The LOD (Logarithm of Odds) score is a statistical measure used in QTL 

mapping to assess the evidence of linkage between a marker and a quantitative trait. It 

quantifies the likelihood of observing the observed marker-phenotype association under the 

null hypothesis of no linkage. Higher LOD scores indicate a stronger association and provide 

evidence for the presence of a QTL in that genomic region (Lander and Botstein, 1989; Li et 

al., 2007). QTL Validation and Fine Mapping: QTL mapping results need to be validated to 

ensure their reliability. Validation involves testing the presence and effects of identified  

QTLs in independent populations or environments. Fine mapping techniques, such as the use 

of additional markers or advanced genotyping technologies, can help narrow down the genomic 

regions containing the QTLs and identify the specific genes underlying the trait (population 
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(Meng et al., 2015; Lander and Botstein, 1989; Li et al., 2007). QTL mapping using the 

software package ICI Mapping (Integrated Composite Interval Mapping) is a widely used 

approach for identifying quantitative trait loci (QTLs) associated with complex traits in various 

crops, including chickpea. ICI Mapping is a comprehensive tool that integrates multiple QTL 

mapping methods and provides robust and accurate QTL detection . Here's a general overview 

of how QTL mapping using ICI Mapping is conducted: 

Phenotypic Data: First, phenotypic data related to the trait of interest, such as seed protein 

concentration, is collected from a population of individuals. The phenotypic data should be 

accurate and consistent across the population.  

Genotypic Data: Genotyping data, typically in the form of molecular markers, is obtained for 

the same set of individuals in the population. These markers can be simple sequence repeats 

(SSRs), single nucleotide polymorphisms (SNPs), or other marker types. The genotypic data 

should cover a sufficient number of markers across the genome to capture genetic variation. 

QTL Model Construction: In ICI Mapping, various QTL mapping methods can be selected to 

construct QTL models. These methods include simple interval mapping (SIM), composite 

interval mapping (CIM), multiple-QTL mapping (MQM), and inclusive composite interval 

mapping (ICIM). The choice of method depends on the specific objectives and characteristics 

of the trait being studied 1 (Wang et al., 2007). 

Statistical Analysis: Once the QTL models are constructed, statistical analysis is performed 

to detect and characterize the QTLs associated with the trait. ICI Mapping uses likelihood ratio 

tests (LRT) or interval mapping algorithms to calculate LOD (logarithm of odds) scores for 

each genomic region, indicating the strength of association between markers and the trait. 

Threshold values for LOD scores are determined based on permutation tests or other statistical 

methods (Meng et al., 2015; Lander and Botstein, 1989). 

QTL Mapping Results: The output of ICI Mapping includes QTL positions, LOD scores, 

additive and dominance effects, and other statistical information for each detected QTL. These 

results provide insights into the genomic regions that contribute to the variation in seed protein 

concentration.  

QTL Validation and Fine Mapping: QTLs identified through ICI Mapping need to be 

validated using additional populations or experiments. Validation can involve different genetic 

mapping populations or environments to confirm the presence and stability of QTL effects. 

Fine mapping techniques, such as using additional markers or genotyping technologies, can be 
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applied to narrow down the genomic regions and identify candidate genes within the QTL 

regions. By utilizing ICIMapping for QTL mapping, researchers can gain a deeper 

understanding of the genetic architecture underlying seed protein concentration in chickpea. 

The results can guide breeding programs by enabling marker-assisted selection and providing 

insights into the underlying genes and molecular mechanisms controlling this important trait.  

QTL IciMapping (Integrated Software for Linkage Analysis and 

Genetic Mapping in Biparental Populations) Software: 

Any genetic studies must utilize one or more genetic populations as their subjects. Regarding 

plant populations employed for genetic linkage analysis and QTL mapping, such as F2, 

backcross (BC), doubled haploids (DH), and recombinant inbred lines (RIL), they can be 

divided into two main categories: temporary populations and permanent populations. In a 

temporary population like F2 or BC, individuals may segregate following self-pollination. 

Conversely, in a permanent population such as DH or RIL, all individuals are genetically 

homozygous, ensuring that the genetic structure remains stable through self-pollination. 

Therefore, the phenotypic values of complex quantitative traits can be consistently measured 

via a replicated experimental design, and the same genotype can be evaluated across different 

environments (i.e., various locations over multiple years), facilitating more precise 

phenotyping and study of genotype (or QTL) interactions with the environment. As a result, 

permanent populations allow for better control of random environmental errors, enhancing the 

accuracy of QTL mapping (Li et al., 2008). QTL ICI Mapping can manage twenty populations 

derived from a biparental cross, which includes both permanent and temporary types. Recently, 

permanent populations made up of a series of chromosome segment substitution (CSS) lines, 

also known as introgression lines, have been utilized for fine mapping of genes. CSS lines are 

typically developed through repeated backcrossing, aided by markers to select donor segments 

and control background genes. In the ideal scenario where each CSS line contains a single 

segment from the donor parent, standard analysis of variance (ANOVA), along with multiple 

mean comparisons between each line and the background parent, can be easily applied to 

determine if a segment in any CSS line harbors QTL responsible for the trait of interest. 

Unfortunately, creating a population with idealized CSS lines demands considerable labor and 

time. Typically, an initial CSS population features each line with several segments from the 

donor parent. Due to the extensive selection pressure involved in producing CSS lines, the 

frequencies of genes and markers within these lines do not follow the same trajectory as those 
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in standard mapping populations like F2, BC, DH, or RIL. QTL ICI Mapping employs a 

likelihood ratio test based on stepwise regression for these non-idealized CSS lines, which is 

also suitable for the idealized ones. A nested association mapping (NAM) population arises 

from a multiple-cross mating design that shares a common parent, offering high power and 

resolution through combined linkage and association analysis, as well as a wider genetic 

resource for quantitative trait evaluation. NAM populations can similarly be applied in QTL 

ICIMapping using a joint linkage mapping method. The QTL IciMapping software allows for 

conducting QTL mapping studies on the 20 biparental populations, CSS lines, and NAM 

populations. Additionally, the construction of linkage maps is restricted to the 20 biparental 

populations. Assuming the genotypes of the two parental lines are AA and BB, this would 

result in the frequencies of the three genotypes: AA, AB, and BB, within the 20 biparental 

populations.  

QTL R code: 

#install.packages(c("qtl", "bioseq")) #install if already not installed 

library(qtl) 

library(bioseq) 

 

#create our first DNA sequence vector using the function dna() 

x <- dna(Seq_1 = "ACCTAG", Seq_2 = "GGTATATACC", Seq_3 = "AGTC") 

is_dna(x) 

x 

#we can select elements: 

x[c("Seq_3", "Seq_1")] 

x[2] 

#the key difference between a DNA vector and a character vector is that DNA uses a 

restricted alphabet.  

#For DNA this alphabet is A, C, G, T, W, S, M, K, R, Y, B, D, H, V, N and -, which 

correpond to the IUPAC symbols for DNA nucleotides.  

#What happens if you include a forbidden character in a 

sequence?#https://www.bioinformatics.org/sms/iupac.html 

y <- dna("?AcGF") 

y 

#input a DNA Sequence 

x_dna <- dna("ATGTCACCACAAACAGAGACT") 

x_dna 

#Transcribe the DNA 

x_rna <- seq_transcribe(x_dna) 

x_rna 

# translate the sequencce 

x_aa <- seq_translate(x_rna) 

x_aa 
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#reverse transcription 

dna_from_rna <- seq_rev_transcribe(x_rna) 

dna_from_rna 

#compute the complement and the reverse complement of DNA and RNA sequences 

x_dna_comp <- seq_complement(x_dna) 

x_dna_comp_rev <- seq_reverse(x_dna_comp) 

dna(x_dna, x_dna_comp, x_dna_comp_rev) 

#STRING OPERATIONS 

#pattern detection and selecion 

x <- dna("CTGAAAACTG", "ATGAAAACTG", "CTGCTG") 

x[seq_detect_pattern(x, "AAAA")] 

#or 

x[seq_detect_pattern(x, "A{4}")] 

#Alternatively, a biological sequence (i.e a DNA, RNA or AA vector) can be used as pattern. 

x[seq_detect_pattern(x, dna("AAAA"))] 

#This wont work. Guess why? 

x[seq_detect_pattern(x, aa("AAAA"))] 

# This works because W can be A or T. 

x[seq_detect_pattern(x, dna("WAWA"))] 

#it is important to find a pattern which contains ambiguous characters 

seq_disambiguate_IUPAC(dna("WAWA")) 

#If the AAAA pattern is an incorrect insertion, we may want to remove it from the sequences.  

seq_remove_pattern(x, "A{4}") 

#We can also replace a specific pattern with another sequence. 

seq_replace_pattern(x, pattern = dna("AAAA"), replacement = dna("----")) 

#if we want to replace the last 3 nucleotides with CCC 

x <- seq_remove_pattern(x, "A{4}") 

seq_replace_position(x, 4, 6,replacement = dna("CCC")) 

#first data set analysis##### 

data(hyper) 

summary(hyper) 

plotMissing(hyper) 

# Genotype frequencies 

geno.table(hyper) 

data <- calc.genoprob(hyper, step = 1) 

# Simple interval mapping (single QTL) 

result <- scanone(hyper, method = "em")  # EM algorithm for interval mapping 

# Plot the LOD scores 

plot(result) 

perm <- scanone(hyper, method = "em", n.perm = 1000) #run upto 1000 permutation 

threshold <- summary(perm, alpha = 0.05) 

abline(h = threshold, col = "red", lty = 2) 

summary(result, perms = perm, alpha = 0.05) 

#2nd analysis#### 

data(fake.f2) 

# take out several QTLs and make QTL object 

qc <- c(1, 8, 13) 

qp <- c(26, 56, 28) 
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fake.f2 <- subset(fake.f2, chr=qc) 

fake.f2 <- calc.genoprob(fake.f2, step=2, err=0.001) 

qtl <- makeqtl(fake.f2, qc, qp, what="prob") 

# fit model with 3 interacting QTLs interacting 

# (performing a drop-one-term analysis) 

lod <- fitqtl(fake.f2, pheno.col=1, qtl, formula=y~Q1*Q2*Q3, method="hk") 

summary(lod) 

# fit an additive QTL model 

lod.add <- fitqtl(fake.f2, pheno.col=1, qtl, formula=y~Q1+Q2+Q3, method="hk") 

summary(lod.add) 

# fit the model including sex as an interacting covariate 

Sex <- data.frame(Sex=pull.pheno(fake.f2, "sex")) 

lod.sex <- fitqtl(fake.f2, pheno.col=1, qtl, formula=y~Q1*Q2*Q3*Sex, cov=Sex, 

method="hk") 

summary(lod.sex) 

# fit the same with an additive model 

lod.sex.add <- fitqtl(fake.f2, pheno.col=1, qtl, formula=y~Q1+Q2+Q3+Sex, cov=Sex, 

method="hk") 

summary(lod.sex.add) 

# residuals 

residuals <- attr(lod.sex.add, "residuals") 

plot(residuals) 

 

 

Further reading: 

E.S. Lander, D. Botstein.(1989). Mapping Mendelian factors underlying quantitative traits 

 using  FLP linkage maps, Genetics,185–199. 

J. Wang, H. Li, X. Wan, W. Pfeiffer, J. Crouch, J. Wan. (2007). Application of identified 

 QTL-marker associations in rice quality improvement through a design breeding 

 approach, Theory and Applied Genetics, 115 (2007) 87–100. 

Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013). The statistical analysis of multi-

environment data: Modeling genotype-by-environment interaction and its genetic basis. 

Frontiers in Physiology, 4, 44. https://doi.org/10.3389/fphys.2013.00044 
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Introduction to Transcriptomics 

Transcriptomics is the study of the complete set of RNA transcripts produced by the genome 

under specific conditions or in a particular cell type. It helps us understand gene expression 

patterns and regulation, giving insights into biological functions and disease mechanisms. 

Applications of Transcriptomics 

• Identifying disease biomarkers 

• Studying gene regulation 

• Uncovering alternative splicing events 

• Understanding developmental processes 

• Investigating responses to stress or drugs 

• Precision medicine (cancer, immune diseases) 

Tools & Resources 

• QC & Preprocessing: FastQC, Trimmomatic 

• Alignment: STAR, HISAT2, Bowtie2 

• Quantification: Salmon, Kallisto, featureCounts 

• DE Analysis: DESeq2, edgeR, limma 

• Annotation: DAVID, Enrichr, GOstats 

• Visualization: R (ggplot2, pheatmap), UCSC Genome Browser 
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1. Data Preprocessing 

Transcriptomic data often come in raw formats from sequencing machines and require 

preprocessing before analysis. Preprocessing steps include quality control, adapter trimming, 

and read alignment. Quality control ensures the reliability of data, adapter trimming removes 

irrelevant sequences, and read alignment maps the reads to a reference genome. 

Data imputation R code 

# Load necessary libraries 

library(impute) 

library(dplyr) 

# Simulated gene expression data with missing values 

set.seed(123) 

genes <- paste0("Gene", 1:10) 

samples <- paste0("Sample", 1:5) 

expression_data <- matrix(sample(c(1:10, NA), 50, replace=TRUE), nrow=10, ncol=5) 

colnames(expression_data) <- samples 

rownames(expression_data) <- genes 

# Check the original expression data with missing values 

head(expression_data) 

# Data Preprocessing - Missing Value Imputation using KNN 

# Impute missing values using the k-nearest neighbors (KNN) method 

expression_data_imputed <- knnImputation(expression_data) 

# Check the imputed expression data 

head(expression_data_imputed) 

#Creating a random string 

> library(Biostrings) 

> DNA_ALPHABET 

 [1] "A" "C" "G" "T" "M" "R" "W" "S" "Y" "K" "V" "H" "D" "B" "N" "-" "+" "." 

> seq <- sample(DNA_ALPHABET[1:4], size = 24, replace = TRUE) 

> seq 

 [1] "A" "G" "A" "T" "G" "C" "C" "T" "T" "C" "T" "C" "A" "C" "C" "G" "A" "A" "T" 

[20] "A" "C" "A" "A" "T" 

> seq <-DNAString(paste(seq, collapse = "")) 

> seq 

24-letter DNAString object 

seq: AGATGCCTTCTCACCGAATACAAT 

#Biostring basic functions 

> alphabetFrequency(seq, baseOnly = T, as.prob = T) 

        A         C         G         T     other  

0.3333333 0.2916667 0.1250000 0.2500000 0.0000000  

> reverseComplement(seq) 

24-letter DNAString object 

seq: ATTGTATTCGGTGAGAAGGCATCT 

> translate(seq) 
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8-letter AAString object 

seq: RCLLTEYN 

> seq[3:8] 

6-letter DNAString object 

seq: ATGCCT 

#Biostring basic functions download FASTA file from open databases 

# Download the sample FASTA file 

>download.file("https://www.ncbi.nlm.nih.gov/sviewer/viewer.cgi?db=nuccore&id=NM_001

301717.2&report=fasta", "sample.fasta") 

downloaded 2319 bytes 

# Read the downloaded FASTA file using Biostrings 

sequences <- readDNAStringSet("sample.fasta") 

# Print the sequences 

>sequences 

DNAStringSet object of length 1: 

    width seq                                               names                

[1]  2191 CTCTAGATGAGTCAGTGGAGGGC...AAAAGTCTTTGGTAAATGGCAAA 

NM_001301717.2 Ho… 

> motif_pattern <- DNAString("CTAG") 

# Find motifs 

>motif_hits <- vmatchPattern(motif_pattern, sequences) 

>for (i in 1:length(motif_hits)) { 

    cat("Motif found in sequence", i, "at positions:",  

        start(motif_hits[[i]]), "\n") 

} 

Motif found in sequence 1 at positions: 3 634 1237  

2. Variant Calling 

Variant calling is a critical step in genomic data analysis, where genetic variations (e.g., single 

nucleotide polymorphisms - SNPs, insertions, and deletions) are identified and compared to a 

reference genome. Variant calling algorithms use statistical models to distinguish true variants 

from sequencing errors. 

Assume you have a CSV file named "sample_variants.csv" with the following content: 

Chromosome Position Reference Variant 

chr1 1000 A T 

chr1 2000 C G 

chr2 1500 G A 
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Now, let's use R to perform variant calling on this example dataset: 

# Load necessary libraries 

install.packages("VariantAnnotation") 

library(VariantAnnotation) 

# Read the CSV file 

data <- read.csv("sample_variants.csv") 

# Create a GRanges object for the variants 

variants <- GRanges( 

  seqnames = data$Chromosome, 

  ranges = IRanges(data$Position, width = 1), 

  ref = data$Reference, 

  alt = data$Variant) 

# Perform variant annotation 

annotated_variants <- annotateVariants(variants) 

# Display the annotated variants 

print(annotated_variants) 

#Output 

GRanges object with 3 ranges and 2 metadata columns: 

      seqnames    ranges strand |    ref                 alt 

         <Rle> <IRanges>  <Rle> |<factor>           <factor> 

  [1]     chr1      1000      * |      A                  T 

  [2]     chr1      2000      * |      C                  G 

  [3]     chr2      1500      * |      G                  A 

  ------- 

seqinfo: 2 sequences from an unspecified genome; no seqlengths 

In this example, we read the CSV file containing variant information, create a GRanges object 

representing the variants, and then use the annotateVariants function from the 

VariantAnnotation package to annotate the variants. The resulting annotated variants are 

displayed, including information about the chromosome, position, reference allele, and variant 

allele. 

Please note that this is a simplified example using a small dataset. In real-world applications, 

variant calling involves more complex data preprocessing, quality filtering, and may require 

alignment to a reference genome before variant identification. 

3. Genome Assembly 

In some cases, genomic data may come from de novo sequencing projects without a reference 

genome. Genome assembly aims to reconstruct the full genome from these short reads. This 

process involves overlapping and assembling reads into contiguous sequences called contigs. 

Detailed description is given in next section. 
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4. Gene Expression Analysis 

Gene expression analysis measures the activity of genes under specific conditions. It involves 

quantifying mRNA levels using techniques like RNA-seq. Differential gene expression 

analysis compares gene expression between different conditions to identify genes with 

significant expression changes. 

Gene expression analysis typically involves preprocessing, normalization, differential 

expression analysis, and visualization. Here's a step-by-step example using a small dataset in 

R: 

# Install and load necessary libraries 

install.packages("limma") 

library(limma) 

Let's assume you have a CSV file named "gene_expression_data.csv" with columns 'Gene', 

'Sample1', and 'Sample2'. Each row represents a gene's expression levels in two different 

samples. 

# Load the data 

data <- read.csv("gene_expression_data.csv", header = TRUE) 

# Extract gene names and expression values 

gene_names <- data$Gene 

expression_matrix <- data[, c("Sample1", "Sample2")] 

# Optional: Convert expression values to matrix format 

expression_matrix <- as.matrix(expression_matrix) 

You can use methods like quantile normalization or variance stabilizing normalization (VSN) 

for normalization. Here, we'll use quantile normalization from the preprocessCore package: 

# Install and load necessary libraries 

install.packages("preprocessCore") 

library(preprocessCore) 

# Perform quantile normalization 

normalized_expression <- normalize.quantiles(expression_matrix) 

We'll use the limma package for differential expression analysis. Let's assume you have a 

design matrix where each sample is labeled with a condition (e.g., 'Control' and 'Treatment'). 

# Create a design matrix 

design <- model.matrix(~0 + factor(c("Control", "Treatment"))) 

# Perform differential expression analysis using linear modeling 

fit <- lmFit(normalized_expression, design) 

contrast_matrix <- makeContrasts(Treatment - Control, levels = design) 

fit_contrast <- contrasts.fit(fit, contrast_matrix) 

fit_ebayes <- eBayes(fit_contrast) 

# Extract differentially expressed genes 

de_genes <- topTable(fit_ebayes, coef = 1, adjust.method = "BH", sort.by = "p", number = Inf) 

Let's create a simple volcano plot to visualize the differential expression results: 

# Install and load necessary libraries 

install.packages("ggplot2") 
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library(ggplot2) 

# Create a volcano plot 

volcano_plot <- ggplot(de_genes, aes(x = logFC, y = -log10(P.Value))) + 

  geom_point(aes(color = ifelse(P.Value < 0.05, "red", "black")), alpha = 0.7) + 

  labs(x = "Log Fold Change", y = "-log10(P.Value)", title = "Volcano Plot") + 

  theme_minimal() 

# Display the plot 

print(volcano_plot) 

5. Functional Annotation 

Functional annotation involves assigning biological functions to genes or genetic regions. It is 

essential for understanding the biological roles of genomic elements and can be achieved using 

various databases and tools. One common method for functional annotation is Gene Ontology 

(GO) enrichment analysis. Here's a small example of how to perform GO enrichment analysis 

using R: 

# Install and load necessary libraries 

install.packages("clusterProfiler") 

library(clusterProfiler) 

Assume you have a vector of differentially expressed gene names from the previous example: 

# Differentially expressed gene names 

de_gene_names <- de_genes$Gene 

# Perform GO enrichment analysis using clusterProfiler 

go_enrichment <- enrichGO(degene = de_gene_names, 

                          universe = gene_names,   # All genes in your dataset 

                          OrgDb = org.Hs.eg.db,     # Organism database (e.g., human) 

                          keyType = "SYMBOL",      # Gene name type 

                          ont = "BP",              # Biological Process ontology 

                          pvalueCutoff = 0.05,     # P-value cutoff 

                          qvalueCutoff = 0.05)    # Adjusted P-value (FDR) cutoff 

# Plot the top enriched GO terms 

barplot(go_enrichment, showCategory = 10) 

6. Pathway and Network Analysis 

Pathway and network analysis help uncover biological pathways and gene interactions. 

Pathway analysis identifies enriched pathways associated with differentially expressed genes, 

while network analysis models the relationships between genes and their interactions. Network 

analysis focuses on understanding interactions between genes or proteins within a network 

context. Here's a small example of how to perform pathway and network analysis using R: 
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# Install and load necessary libraries 

install.packages("clusterProfiler") 

install.packages("STRINGdb") 

library(clusterProfiler) 

library(STRINGdb) 

Assume you have a vector of differentially expressed gene names: 

# Differentially expressed gene names 

de_gene_names <- de_genes$Gene 

Perform Pathway Analysis using clusterProfiler: 

# Perform KEGG pathway enrichment analysis using clusterProfiler 

kegg_enrichment <- enrichKEGG(gene = de_gene_names, 

                              organism = "hsa",     # Human KEGG pathways 

                              pvalueCutoff = 0.05, 

                              qvalueCutoff = 0.05) 

 

# Print the top enriched pathways 

print(kegg_enrichment) 

Network Analysis using STRINGdb: 

# Create a STRING database object 

string_db <- STRINGdb$new(version="11", species=9606)  # 9606 for human 

# Get interactions for the differentially expressed genes 

interaction_data <- string_db$get_interactions(de_gene_names) 

# Create a network plot using igraph and visNetwork 

library(igraph) 

library(visNetwork) 

# Convert interactions to an igraph object 

gene_network <- graph_from_data_frame(interaction_data, directed = FALSE) 

# Customize network plot attributes 

network_vis <- visIgraph(gene_network) %>% 

  visNodes(color = "lightblue", shape = "circle") %>% 

  visEdges(color = "gray") %>% 

  visLayout(randomSeed = 123) 

# Display the network plot 

network_vis 

7. Epigenomic Analysis 

Epigenomics explores modifications to the genome that affect gene expression without altering 

the DNA sequence. Epigenomic analysis includes DNA methylation and histone modification 

studies, which play critical roles in development and disease. Here's a small example of how 

to perform a basic epigenomic analysis using DNA methylation data in R: 
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# Install and load necessary libraries 

install.packages("minfi") 

library(minfi) 

Assume you have a DNA methylation dataset in the form of a MethylSet object. This could be 

a publicly available dataset or your own data in the appropriate format. 

# Load and preprocess DNA methylation data 

data("MsetExample") 

methylation_data <- MsetExample 

Quality control is crucial in epigenomic analysis to ensure data reliability. 

# Quality control 

qc <- getQC(methylation_data) 

plotQC(qc) 

You can identify differentially methylated regions (DMRs) between different groups. 

# Define groups (for example, controls and cases) 

groups <- factor(c("Control", "Case", "Control", "Case")) 

# Perform DMR analysis 

dmr_results <- DMRcate(methylation_data, group = groups) 

Visualize the DMR results. 

# Plot DMR results 

plotDMR(dmr_results) 

 

8. Association Studies 

Genomic data analysis is extensively used in genome-wide association studies (GWAS) to 

identify genetic variants associated with specific traits or diseases. GWAS involves comparing 

genotypic data from cases and controls to discover genetic associations. It is a powerful 

approach that involves rapidly scanning markers across entire DNA genomes of numerous 

subjects to identify genetic variations linked to specific traits. By discovering new genetic 

associations, researchers can enhance strategies for detecting and managing these traits. GWAS 

is particularly valuable for uncovering genetic variations contributing to common, complex 

traits. In essence, GWAS relies on establishing correlations between genetic markers, often 

Single Nucleotide Polymorphisms (SNPs), and measurable traits within a population. The 

primary aim of GWAS is to pinpoint potential causal variants within genes or their regulatory 

elements that influence the target phenotype. This process contributes to a deeper 

comprehension of the genetic underpinnings of the trait. The typical stages of a GWAS 

encompass: 

Genotype Calling and Quality Control: This involves determining genotypes from raw chip 

data and applying fundamental quality control measures. 
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Principal Component Analysis (PCA): PCA aids in detecting and, if necessary, correcting 

population stratification—a potential source of bias. 

Genotype Imputation: Imputation employs linkage disequilibrium data from references like 

HapMap to predict missing genotypes. 

Association Testing: Associations between individual SNPs and continuous or categorical 

phenotypes are statistically tested. 

Global Significance Analysis and Correction: Multiple testing correction methods are applied 

to ensure robust significance thresholds. 

Data Presentation: Visual aids like quantile-quantile and Manhattan plots facilitate effective 

presentation of results. 

Cross-Replication and Meta-Analysis: Integration of association data from multiple studies, 

including cross-replication and meta-analysis, strengthens the findings. 

Despite large-scale (meta-)studies involving thousands or even tens of thousands of samples, 

only a handful of candidate loci with highly significant associations are typically identified. 

Although these associations are replicated in independent studies, each locus explains a minute 

fraction (<1%) of the genetic variance underlying the phenotype. Various factors contribute to 

this outcome, necessitating ongoing research and advanced methodologies to unravel the 

complexity of genetic influences on traits. 

The methodology of a Genome Wide Association Study (GWAS) revolves around the 

systematic examination of numerous variable points distributed across a genome. Given that 

these genetic variations are inherited in groups or blocks, it's unnecessary to test every single 

point individually. This approach entails swiftly scanning markers throughout the entire DNA 

or genomes of multiple subjects to uncover genetic variations linked to specific traits. 

Identifying novel genetic associations empowers researchers to develop enhanced strategies 

for managing these traits. The foundation of genome-wide association studies was made 

feasible by the advent of chip-based microarray technology capable of assaying over a million 

Single Nucleotide Polymorphisms (SNPs) or more. The primary platforms employed in most 

GWAS are Illumina and Affymetrix. The Affymetrix platform embeds short DNA sequences 

as spots on a chip, which discern specific SNP alleles through differential hybridization of 
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sample DNA. Conversely, Illumina employs a bead-based approach with slightly lengthier 

DNA sequences to identify alleles. While Illumina chips are pricier to manufacture, they offer 

superior specificity. Notably, technology for measuring genomic variation is rapidly evolving, 

with chip-based genotyping platforms progressively giving way to cost-effective next-

generation sequencing methods for whole-genome sequencing. GWAS target two primary 

classes of phenotypes: categorical (binary, case/control) and quantitative traits. Statistically, 

quantitative traits are favored due to their enhanced power to detect genetic effects and often 

yield more interpretable outcomes. The design of a genetic association study varies based on 

several factors: 

Scale of Study: It can be genome-wide or genomics-based. 

Marker Design: Marker selection depends on the choice of markers like microsatellites, 

SNPs, or CNVs. 

Subject Design: The study can adopt a candidate gene approach or a genome-wide screening 

approach. 

In essence, the GWAS methodology involves strategically analyzing genetic variations to 

reveal significant associations between markers and traits, with the aim of advancing our 

understanding and management of complex genetic traits. 

Genome-wide studies can be broadly categorized into three main types: cohort studies, family-

based studies, and case-control studies. Each type has its own strengths and limitations, shaping 

their applications in genetic research.  

Cohort studies involve subjects assumed to represent the broader population. Phenotypes are 

used to establish similarities among individuals, regardless of genetic variations. This method 

directly assesses risk and is less biased compared to case-control studies. However, cohort 

studies demand long-term follow-up and a substantial sample size, making them expensive and 

less suitable for studying rare traits. 

Family-based studies assume that families are representative of the target population and both 

parents share the same genetic background. These studies are advantageous for assessing 

Mendelian inheritance and are less susceptible to spurious associations. Parent phenotypes 

aren't always necessary, allowing for investigations into imprinting. Simple logistics aid 
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association detection. Yet, family-based studies are cost-inefficient, possess low power, and 

are sensitive to genotyping errors. 

Case-control studies involve subjects drawn from the same population, with cases representing 

all instances of the trait in question. These studies are straightforward, cost-effective, and 

accommodate a large number of cases and controls. They are optimal for investigating rare 

traits. However, case-control studies are susceptible to population stratification, and factors 

like batch effects and biases can introduce distortions. Additionally, case-control studies often 

lead to overestimations for common traits. 

GAPIT R packages for GWAS 

#install.packages("devtools") 

#devtools::install_github("jiabowang/GAPIT3",force=TRUE) 

library(GAPIT3) 

library(GAPIT) 

myY  <- read.table("mdp_traits.txt", head = TRUE) 

myG <- read.delim("mdp_genotype_test.hmp.txt", head = FALSE) 

myGAPIT <- GAPIT(Y=myY, G=myG, PCA.total=3) 

myGAPIT <- GAPIT(Y=myY[,1:2], G=myG, PCA.total=3, model="MLM") 

#Tutorial 3: User defined Kinship and PCs 

myKI <- read.table("KSN.txt", head = FALSE) 

myCV <- read.table("Copy of Q_First_Three_Principal_Components.txt", head = TRUE) 

myGAPIT <- GAPIT(Y=myY[,1:2], G=myG, KI=myKI, CV=myCV,) 

#Tutorial 4: Genome Prediction 

myGAPIT <- GAPIT(Y=myY[,1:2], G=myG, KI=myKI, PCA.total=3, model=c("gBLUP")) 

#Tutorial 6: Numeric Genotype Format 

myGD <- read.table("mdp_numeric.txt", head = TRUE) 

myGM <- read.table("mdp_SNP_information.txt" , head = TRUE) 

myGAPIT <- GAPIT(Y=myY[,1:2], GD=myGD, GM=myGM, PCA.total=3) 

Genome-wide association studies (GWAS) are predominantly applied in disease-focused 

research, where these different study designs offer distinct advantages based on the specific 

research objectives and resources available. 

9. Structural Variants 

Genomic data analysis also focuses on identifying structural variants, such as large deletions, 

duplications, and inversions, which can cause genetic diseases or contribute to evolutionary 

processes. 
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10. Genomic Analysis using R-Programming Language 

R is a popular open-source programming language used for statistical computing and graphics. 

It provides a wide range of packages for analyzing and visualizing large-scale biological 

datasets. R is a popular programming language for data analysis and visualization in 

computational biology and bioinformatics. Role of R-software used in big data bioinformatics 

and computational biology described in  Figure 1. 

 

 

 

 

 

 

 

Figure 1. Overview of role of R-software used in big data bioinformatics and 

computational biology 

Here are some examples of R code that can be used for Big Data analysis in this field: 

10. 1. Data preprocessing: 

a) Reading and cleaning data: 

R can be used to read and import large datasets in various formats such as CSV, Excel, and 

TSV. The following code imports a CSV file called "input_file_name.csv" into R: 

Table 1: Illustrative Data Table for Demonstrating Preprocessing with R 

ID Name Age Score 

1 John 25 85 

2 Jane 32 90 

3 Michael NA 75 

4 Susan 28 88 

5 Emily 22 92 

2 Jane 32 90 
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# Read data from a CSV file 

data <- read.csv("input_file_name.csv", header = TRUE) 

# Clean data by removing NAs and duplicates 

cleaned_data <- na.omit(data) 

cleaned_data <- unique(cleaned_data) 

b) Filtering data: 

# Filter data to keep only rows where gene expression is above a certain threshold value  

filtered_data <- data[data$expression > 10,] 

10.2. Data analysis: 

R has many built-in functions and libraries that can be used for data analysis. The following 

code calculates the mean, median, and standard deviation of a column in a data frame: 

mean_value <- mean(data$column) 

median_value <- median(data$column) 

sd_value <- sd(data$column) 

a) Gene expression analysis using DESeq2 package: 

# Load DESeq2 package 

library(DESeq2) 

# Create a DESeqDataSet object 

dds <- DESeqDataSetFromMatrix(countData = counts, colData = metadata, design = ~ 

condition) 

# Run differential expression analysis 

dds <- DESeq(dds) 

# Get differentially expressed genes 

results <- results(dds) 

b) Clustering data: 

# Create a distance matrix 

dist_mat <- dist(data, method = "euclidean") 
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# Cluster the data using hierarchical clustering 

hclust_res <- hclust(dist_mat) 

# Visualize the clustering using a dendrogram 

plot(hclust_res) 

c) Machine learning: R provides several libraries for machine learning such as caret and mlr. 

The following code trains a linear regression model using the caret library: 

library(caret) 

model <- train(column_to_predict ~ ., data = data, method = "lm") 

10.3. Data visualization: 

R provides several powerful libraries such as ggplot2 for data visualization. The following code 

creates a scatterplot using ggplot2: 

library(ggplot2) 

ggplot(data, aes(x=column1, y=column2)) + geom_point() 

a) Creating a heatmap: 

# Load pheatmap package 

library(pheatmap) 

# Create a heatmap of gene expression data 

pheatmap(data, scale = "row") 

b) Creating a scatterplot: 

# Create a scatterplot of gene expression data 

plot(data$gene1, data$gene2, xlab = "Gene 1 expression", ylab = "Gene 2 expression") 

10.4. Data storage: 

# Save cleaned data to a CSV file 

write.csv(cleaned_data, "cleaned_data.csv") 

The following code loads a dataset of gene expression data and performs differential gene 

expression analysis using Bioconductor: 

These are just a few examples of the many tasks that can be performed using R for Big Data 

analysis in computational biology and bioinformatics. The specific commands used will 

depend on the data being analyzed and the goals of the analysis. 
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11. NGS Data Analysis 

A genome represents the entirety of an organism's cellular DNA, carefully organized to fit into 

chromosomes, ensuring proper packaging and enabling precise expression. This expression 

enables a cell to effectively transmit genetic information to subsequent generations. Genomes 

reside within cell nuclei, as well as within chloroplasts and mitochondria in plants. The timing, 

specificity, and degree of gene expression are dictated by the gene's sequence itself. Essentially, 

the arrangement of DNA's nucleotides along the strand is the key determinant. Therefore, 

comprehending the sequence of a gene, along with its neighboring regions within the genome, 

and even the complete genome, becomes crucial for grasping its intricate structure and 

complexity. This realm pertains to structural and functional genomics, where scientists unravel 

the life's code, aiming to fathom its intricacies and harness its potential benefits. 

In the 1960s and 70s, the task of genome sequencing was seen as a formidable challenge and 

financially demanding endeavor. Prevailing theories suggested that the size of an organism's 

genome was directly linked to its overall size. However, these theories were contradicted by 

empirical evidence. Notably, it was discovered that the genome of a substantial mammal was 

smaller than that of a lily plant. Even prokaryotic organisms appeared to possess more DNA in 

their genomes than their single-cell confines could accommodate or efficiently utilize. A 

considerable portion of the genome was initially deemed redundant and coined "junk DNA," 

seemingly consuming the organism's resources and energy without apparent purpose. 

Subsequently, a transformative era of rapid progress dawned in comprehending the genetic 

code and its functioning in prokaryotic and eukaryotic organisms. The early strides in 

sequencing were marked by significant breakthroughs. In 1977, two distinct methods for DNA 

sequencing emerged. The first technique, known as Maxam-Gilbert sequencing, developed by 

scientists at Harvard University, employed specific chemicals to cleave radioactively labeled 

DNA at precise base positions. The second approach, pioneered by Frederick Sanger in 

England and termed the chain termination method (also referred to as the Sanger method), 

involved a DNA synthesis reaction using specialized forms of nucleotides that, upon 

integration into a DNA chain, halted further chain elongation. 

A pivotal milestone in genome sequencing emerged during the latter part of the previous 

decade with the introduction of next-generation sequencers by 454 and Solexa. This heralded 

a transformative shift in the approach to genome sequencing. Earlier projects, spanning species 
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such as humans, Arabidopsis, and rice, primarily utilized the BAC by BAC (bacterial artificial 

chromosome) method. While effective, this approach was time-consuming, resource-intensive, 

and financially demanding. It relied on the availability of high-density molecular maps, a 

resource limited to a select few plants. 

Significantly, two innovative systems, Pacific Biosciences and Oxford Nanopore, have 

emerged, providing the remarkable advantage of generating longer reads, with an average 

spanning of up to 10 kb or more. As a result, the landscape of genome sequencing has 

undergone a notable transformation. Today, the decoding and comprehensive analysis of 

genomes have become notably more accessible, eliminating the once imposing barrier of cost. 

Over the past decade, the cost of genome sequencing has considerably diminished, 

transitioning from multi-million-dollar endeavors, such as the sequencing of human and rice 

genomes, to a few hundred dollars for a complete genome. This excludes expenses associated 

with platforms and data analysis. Nonetheless, it's important to acknowledge that each of these 

technologies is not without its drawbacks. From a bioinformatics perspective, the task of 

assembling every genome presents challenges attributed to a range of factors. Particularly in 

the realm of plant genomics, these challenges are particularly pronounced and often appear 

unending. Plant genomes exhibit remarkable complexity due to several factors: 1) 

Encompassing larger genome sizes, 2) Displaying polyploidy (multiple sets of chromosomes), 

3) Experiencing high heterozygosity (genetic diversity), 4) Possessing an epigenetic nature 

(gene regulation mechanisms influenced by chemical modifications), and 5) Featuring the 

presence of both mitochondrial and chloroplast genomes. The assembly of these intricate plant 

genomes poses a substantially more formidable challenge than that encountered with 

mammalian genomes. It underscores the intricate nature of plants' genetic makeup and 

underscores the ongoing pursuit to conquer the complexities inherent in understanding and 

decoding these genomes.  

11.1. Genome Assembly: 

Sequence assembly involves the intricate process of aligning and merging fragments of DNA 

sequences to reconstruct the original genetic sequence. This step is essential due to the 

limitations of DNA sequencing technology, which is unable to read entire genomes in a single 

sweep. Instead, it generates small fragments of genetic material, ranging from 20 to 1000 bases, 

depending on the specific sequencing technology employed. The recent strides in sequencing 
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techniques have led to the generation of extensive volumes of sequence data. However, the 

fragments produced by these advanced high-throughput methods are notably shorter compared 

to traditional Sanger sequencing. 

The initial sequence assemblers emerged during the late 1980s and early 1990s as refined 

versions of simpler sequence alignment programs. These assemblers were developed to 

reconstruct the comprehensive genetic blueprint by piecing together myriad fragments 

produced by automated DNA sequencers. These sequencing instruments, known as DNA 

sequencers, laid the groundwork for subsequent advancements. Algorithms were crafted to 

facilitate whole-genome shotgun (WGS) fragment assembly. Prominent among these 

algorithms were Atlas, Arachne, Celera, PCAP, Phrap (www.phrap.org), and Phusion. These 

programs adopted an overlap-layout-consensus approach, wherein all the individual reads are 

systematically compared to one another in a pairwise manner. In essence, sequence assembly 

represents a critical endeavor in modern genomics, allowing scientists to reconstruct the 

intricate genetic puzzle from fragmented pieces and unveiling the comprehensive blueprint 

encoded within DNA. 

 

The resultant draft genome sequence is crafted through the amalgamation of information 

gleaned from sequenced "contigs." Subsequently, this information is harnessed to construct 

"scaffolds," a process outlined in Figure 1. These scaffolds, in turn, are strategically positioned 

along the physical map of chromosomes, giving rise to a meticulously delineated "golden path." 

Recent times have witnessed the emergence of novel sequencing methodologies. Among these, 

commercially available technologies encompass pyrosequencing (454 Sequencing), 

sequencing by synthesis (Illumina), and sequencing by ligation (SOLiD). Notably, the reads 

generated through these next-generation sequencing techniques are notably shorter compared 

to traditional Sanger reads. Due to their abbreviated length, these reads necessitate prolific 

1. Overlap: find potentially overlapping 

reads. 

2.  Layout: merge reads into contigs 

and contigs into super-contigs. 

3. Consensus: derive the DNA sequence and 

correct read errors. 
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production and elevated coverage depths compared to earlier sequencing methodologies. In 

contrast to the extended overlaps facilitated by long reads, short reads within repetitive DNA 

regions exhibit fewer discernible differences for accurate assessment. These distinct challenges 

have prompted multiple research teams to engineer de novo assembly tools tailored to 

accommodate these exceedingly short reads. By addressing these intricacies, these specialized 

tools aim to pave the way for effectively assembling genomes even in the presence of the 

inherent limitations posed by short read lengths and repeat complexities. 

Types of Sequencers and data format  

Illumina :            FASTQ  

SoLID/ABI-Life: FASTA   

Roche 454 :            SFF  

Ion Torrent :           SFF or FASTQ 

Types of Assembly 

There are two type of assembly base on the availability of reference genome: 

a) De novo Assembly: Reads are aligned to each other to form a consensus sequence that are 

called contigs. 

b) Reference genome assembly: Here reads are aligned with the available reference genome 

to form a consensus sequences. 

Genome Assembly techniques 

General procedure for genome sequencing and assembly emphasizing the procedures that used 

at genome-sequencing centres-  

• Fragment readout: The sequences of each fragment are determined using automatic 

base-calling software. Phred is the most widely used program. 

• Trimming vector sequences: Shotgun reads often contain part of the vector sequences 

that have to be removed before sequence assembly. 

• Trimming low-quality sequences: Shotgun reads contain poor quality base calls and 

removing or masking out these low-quality base calls often leads to more accurate 

sequence assembly. However, this step is optional and some sequencing centres do not 
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mask out low-quality base calls, relying on the fragment assembler to utilize quality 

values to decide true fragment overlaps. 

• Fragment assembly: The shotgun data is input to a fragment assembler that 

automatically generates a set of aligned fragment called contigs.  

• Assembly validation: Some contigs that assembled in the previous steps may be 

misassembled due to repeats. Since we do not have a priori knowledge on repeats in the 

targets DNA, it is very difficult to verify the correctness of assembly of each contig and 

this step is largely done manually. There are recent algorithmic developments on 

automatic verification of contig assemblies. 

• Scaffolding Contigs: Contigs needs to be oriented and ordered. The mate-pair 

information is a primary information source for this step, thus this step is not achievable 

if the input shotgun is not prepared by reading both ends of clones. 

• Finishing: Assuming that all contigs are assembled correctly and contigs are oriented 

and ordered correctly, we can close gaps between two contigs by sequencing specific 

regions that corresponds to the position of gaps. 

 

De novo assembly of next-generation sequencing reads 

Once Next-Generation Sequencing (NGS) reads have been generated, they undergo alignment 

to a known reference sequence or are subjected to de novo assembly. De novo assembly is a 

pivotal process employed to reconstruct the genome of organisms that have not been previously 

sequenced or lack a comparative reference genome. This intricate task involves the shotgun 

approach, wherein the organism's genome is fragmented into small pieces, each of which is 

sequenced individually and then reconstructed through computational techniques. The 

complexity of de novo assembly arises from the presence of segments within genomes that 

share identical sequences, commonly referred to as repeats. These repeats vary significantly in 

length, rendering the task of recovering the entire genome an arduous endeavor. Consequently, 

most de novo assembly tools focus on the generation of extended segments of the genome, 

termed contigs. While the process yields valuable insights, it falls short of providing a complete 

genome reconstruction. 

Furthermore, the intricacy of de novo assembly escalates in proportion to the genome's size. 

Within the realm of de novo genome assembly, two primary categories stand out: Overlap 

Layout and Consensus (OLC), and De Bruijn graph-based methods. OLC methods, while 
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highly effective, tend to be computationally intensive. In contrast, De Bruijn graph-based 

methods offer efficiency, yet they come with a higher memory requirement. Notably, within 

the De Bruijn graph framework, several tools have been developed, each contributing to the 

arsenal of options available for genome assembly. These tools reflect the continuous refinement 

and diversification of approaches in pursuit of accurate and comprehensive genome 

reconstruction 

Assembly for Double-Ended Short-read Sequencing Technologies 

Emerging Pyrosequencing-like technologies hold immense promise, yet they come with a 

trade-off - the resulting read lengths are notably shorter compared to those generated by present 

sequencing platforms. This inherent brevity poses a challenge when encountering sequence 

repeats. Indeed, if a sequence repetition exceeds the length of the read, it ushers in an intractable 

ambiguity. A particular concern is the concise representation of the target within the shortest 

common superstring derived from a set of short reads. This representation often emerges as 

excessively compressed. To grapple with the complexities of repeat sequences, a solution 

emerges through the proposal of a variable-insert length, double-ended read protocol. This 

protocol entails fragmenting multiple target clones and employing gel electrophoresis to 

meticulously segregate fragments within a specific length range, denoted as a ± b%. This is 

equivalently expressed as fragments of lengths ranging from d to d+w, where d and w are 

designated integers. By embracing this innovative approach, the challenge of repeats can be 

systematically addressed, paving the way for enhanced accuracy and comprehensive insights 

in sequencing outcomes. 

Issues and Problems of assembling complex genomes 

Genome assembly is a very difficult computational problem, made more difficult because many 

genomes contain large numbers of identical sequences, known as repeats. These repeats can be 

thousands of nucleotides long, and some occur in thousands of different locations, especially 

in the large genomes of plants and animals. 

One challenge to sequencing crop genomes is the vast difference in scale between the size of 

the genomes and the lengths of the reads produced by the different sequencing methods. While 

there may be a 10–500× difference in scale between the short reads produced by second-

generation sequencing and modern Sanger sequencing, this is still dwarfed by the difference 

between Sanger read length and the lengths of complete chromosomes. As the sequenced 

http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Repeated_sequence_(DNA)
http://en.wikipedia.org/wiki/Plant
http://en.wikipedia.org/wiki/Animal
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organisms became larger and more complex, the assembly programs employed in genome 

projects required progressively advanced techniques to manage: 

• Terabytes of sequencing data that need to be processed on computing clusters; 

• Identical and nearly identical sequences (referred to as repeats) that can, in the worst-case 

scenario, lead to exponential increases in the time and space complexity of algorithms; and 

• Errors in the fragments produced by sequencing instruments, which can complicate the 

assembly process. 

Table : Lists of prevalent de-novo assemblers  

Name Type Technologies Author Late Updated 

BySS (large) genomes Solexa, 

SOLiD 

Simpson, J. et 

al. 

2008 / 2011 

ALLPATHS-

LG 

(large) genomes Solexa, 

SOLiD 

Gnerre, S. et al. 2011 

AMOS genomes Sanger, 454 Salzberg, S. et 

al. 

2002 / 2008 

Arapan-M Medium Genomes 

(e.g. E.coli) 

All Sahli, M. & 

Shibuya, T. 

2011 / 2012 

Arapan-S Small Genomes 

(Viruses and 

Bacteria) 

All Sahli, M. & 

Shibuya, T. 

2011 / 2012 

Celera WGA 

Assembler / 

CABOG 

(large) genomes Sanger, 454, 

Solexa 

Myers, G. et al.; 

Miller G. et al. 

2004 / 2010 

CLC Genomics 

Workbench & 

CLC Assembly 

Cell 

genomes Sanger, 454, 

Solexa, 

SOLiD 

CLC bio 2008 / 2010 / 

2011 

Cortex genomes Solexa, 

SOLiD 

Iqbal, Z. et al. 2011 

DNA Baser genomes Sanger, 454 Heracle BioSoft 

SRL 

2013 

DNA Dragon genomes Illumina, 

SOLiD, 

Complete 

Genomics, 

454, Sanger 

SequentiX 2011 

DNAnexus genomes Illumina, 

SOLiD, 

Complete 

Genomics 

DNAnexus 2011 

Edena genomes Illumina D. Hernandez, 

P. François, L. 

2008/2013 

http://en.wikipedia.org/wiki/Terabytes
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Farinelli, M. 

Osteras, and J. 

Schrenzel. 

Euler genomes Sanger, 454 

(,Solexa ?) 

Pevzner, P. et al. 2001 / 2006 

 

Euler-sr genomes 454, Solexa Chaisson, MJ. et 

al. 

2008 

Forge (large) genomes, 

EST, metagenomes 

454, Solexa, 

SOLID, 

Sanger 

Platt, DM, 

Evers, D. 

2010 

Conclusion 

Genomic data analysis is a rapidly evolving field that plays a crucial role in understanding 

genetic variation, gene expression, and disease associations. By applying various 

computational and statistical methods, researchers can gain valuable insights into the 

complexities of genomes and improve our understanding of fundamental biological processes 

and human health. Transcriptomic analysis is a powerful tool for exploring gene expression 

patterns at a genome-wide level. Advances in RNA-Seq have revolutionized our ability to study 

dynamic changes in the transcriptome with high resolution and sensitivity. 
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GWAS stands for Genome Wide Association Studies. An examination of many common 

genetic variants in different individuals to see if any variant is associated with a trait. GWAS 

typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits 

like major diseases. 

The central goal of GWAS is to identify casual mutations that have an effect on a phenotype 

(any aspect of an organism that can be measured). A casual mutation is a position in the genome 

where an experimental manipulation of the DNA produces an effect on the phenotype on 

average. From a statistical point of view, a casual mutation occurs when Cov (Y,X ) ¹ 0 where 

Y are the value of the phenotypes and X the value of the genotypes. Genome-wide association 

analyses are aimed for detecting variants at genomic loci that are associated with complex traits 

in the population and, in particular, at detecting associations between common single-

nucleotide polymorphisms (SNPs) and common diseases. Markers that are significantly 

associated with the phenotype are presumed to be in linkage disequilibrium (LD) with putative 

Quantitative Trait Loci (QTL). The goal of GWAS, is to test for association between the 

frequency of each of hundreds of thousands of common variants and a given phenotype, that 

exceed a conservative genome-wide threshold for association and then test these for evidence 

of replication. High statistical power, low probability of Type I error, use of covariates, and 

high resolution are the keys for success in GWAS. 

A. Basic Guideline to Perform a GWAS Study: -  

 

1. Read phenotypes and check the assumptions of the models. 

(a) Check outliers. 

(b) Normal distribution of errors. Possible transformation of 

the data. 

2. Read genotypes and filter for: 

(a) Markers with a proportion of missing data more than a 

particular threshold set by the researcher. 

(b) Individuals with a high proportion of missing data. 
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(c) Individuals with a high proportion of heterozygous. 

(d) Remove genotypes with a minor allele frequency (MAF) less than 5 %. 

(e) Remove genotypes that fail a Hardy-Weinberg test of equilibrium (Normally, use a 

conservative p-value cut-off of <10−5). 

 

3. Imputation of the genotype file, and performing the Kinship matrix. 

4. Look for population structure effects. 

5. Match phenotypes and genotypes. 

6. Perform GWAS function from GAPIT or rrBLUP with and without population structure 

effects and Kinship matrix. 

7. Manhattan and Q-Q plot graphs. 

8. Interpretation and Validation. 

 

What is GAPIT? 

Genome Association and Prediction Integrated Tool 

• Statistical package that is run in the R software environment 

• Developed by Alex Lipka and Zhiwu Zhang 

• Alexander E. Lipka et al. (2012) GAPIT: Genome Association and 

Prediction Integrated Tool. Bioinformatics. doi: 10.1093/bioinformatics/bts444 

• Uses statistical tools implemented in other programs like TASSEL 

GAPIT is a package that is run in the R software environment. R can be freely downloaded 

from http://www.r-project.org. We also recommend the integrated development environment 

RStudio which is also freely available at http://www.rstudio.com. 

Installing GAPIT3: - 

GAPIT3 can currently be installed in several ways. 

• From source on the internet 

• From GitHub 

• From an archive 

Installation from source at ZZlab:- 

GAPIT can be loaded with a single funciton. 

R> source("http://zzlab.net/GAPIT/GAPIT.library.R") 

http://www.r-project.org/
http://www.rstudio.com/
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After loading the library, we'll need to source the GAPIT function as well. 

R> source("http://zzlab.net/GAPIT/gapit_functions.txt") 

Installation from GitHub:- 

Installation can also be made from GitHub when the R package devtools is available. 

R> install.packages("devtools") 

R> devtools::install_github("jiabowang/GAPIT3",force=TRUE) 

R> library(GAPIT3) 

Installation from an archive:- 

GAPIT can be installed from an archive such as *.tar.gz or *.zip archive. An archive can be 

downloaded from the "releases" page. If you would like the latest version of GAPIT from the 

GitHub site you may want to clone it and then build it (this may require Rtools on Windows). 

bash$ git clone git@github.com:jiabowang/GAPIT3.git 

bash$ R CMD build GAPIT3 

Once an archive has been obtained it can be installed from a shell, similar to as follows. 

bash$ R CMD INSTALL GAPIT3_3.1.0.9000.tar.gz 

Or similarly from within R. 

R> install.packages("GAPIT3_3.1.0.9000.tar.gz", repos = NULL, type="source") 

 

Data Preparation: - 

Phenotype Data 

The user has the option of performing GWAS on multiple phenotypes in GAPIT. This is 

achieved by including all phenotypes in the text file of phenotypic data. Taxa names should be 

in the first column of the phenotypic data file and the remaining columns should contain the 

observed phenotype from each individual. Missing data should be indicated by either “NaN” 

or “NA”. 
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Genotype Data: - 

Hapmap Format 

Hapmap is a commonly used format for storing sequence data where SNP information is stored 

in the rows and taxa information is stored in the columns. This format allows the SNP 

information (chromosome and position) and genotype of each taxa to be stored in one file. 

Numeric Format 

GAPIT also accepts the numeric format. Homozygotes are denoted by “0” and “2” and 

heterozygotes are denoted by “1” in the “GD” file. Any numeric value between “0” and “2” 

can represent imputed SNP genotypes. The first row is a header file with SNP names, and the 

first column is the taxa name. The “GM” file contains the name and location of each SNP. The 

first column is the SNP id, the second column is the chromosome, and the third column is the 

base pair position. As seen in the example, the first row is a header file. 

Analysis GWAS: - 

A Basic Scenario  

The user needs to provide two data sets (phenotype and genotype) and one input parameter. 

This parameter, “PCA.total”, specifies the number of principal components (PCs) to include in 

the GWAS model. GAPIT will automatically calculate the kinship matrix using the VanRaden 

method23, perform GWAS and genomic prediction with the optimum compression level using 

the default clustering algorithm (average) and group kinship type (Mean). The scenario 

assumes that the genotype data are saved in a single file in HapMap format. If the working 

https://github.com/jiabowang/GAPIT3/blob/master/tools/phenotype.png
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directory contains the tutorial data, the analysis can be performed by typing these command 

lines: 

#Step 1: Set data directory and import files 

myY <- read.table("mdp_traits.txt", head = TRUE)  

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE)  

 

#Step 2: Run GAPIT  

myGAPIT <- GAPIT(  

Y=myY,  

G=myG,  

PCA.total=3  

) 

• GLM 

The GAPIT uses Least Squares to solve the model. The GAPIT code for running a GLM is: 

  myGAPIT_GLM <- GAPIT( 

  Y=myY[,c(1,2)], 

  GD=myGD, 

  GM=myGM, 

  model="GLM", 

  PCA.total=5, 

  file.output=T 

  ) 

• MLM 

EMMA method is used in GAPIT, the code of MLM is: 

  myGAPIT_MLM <- GAPIT( 

  Y=myY[,c(1,2)], 

  GD=myGD, 

  GM=myGM, 

  model="MLM", 

  PCA.total=5, 

  file.output=T 

  ) 

• CMLM 

Compress Mixed Linear Model is published by Zhang in 2010. The code of CMLM is: 

  myGAPIT_CMLM <- GAPIT( 

  Y=myY[,c(1,2)], 

  GD=myGD, 

  GM=myGM, 

  model="CMLM", 
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  PCA.total=5, 

  file.output=T 

  ) 

 

• MLMM 

Multiple Loci Mixied linear Model is published by Segura in 2012. The code of MLMM in 

GAPIT is: 

  myGAPIT_MLMM <- GAPIT( 

  Y=myY[,c(1,2)], 

  GD=myGD, 

  GM=myGM, 

  model="MLMM", 

  PCA.total=5, 

  file.output=T 

  ) 

• SUPER 

Settlement of MLM Under Progressively Exclusive Relation- ship is published by Qishan in 

2014. The code of SUPER is: 

  myGAPIT_SUPER <- GAPIT( 

  Y=myY[,c(1,2)], 

  GD=myGD, 

  GM=myGM, 

  model="SUPER", 

  PCA.total=5, 

  file.output=T 

  ) 

• Farm-CPU 

Fixed and random model Circulating Probability Unification (FarmCPU) is published by 

Xiaolei in 2016. The code of Farm-CPU in GAPIT is: 

  myGAPIT_FarmCPU <- GAPIT( 

  Y=myY[,c(1,2)], 

  GD=myGD, 

  GM=myGM, 

  model="FarmCPU", 

  PCA.total=5, 

  file.output=T 

  ) 

• Convert HapMap format to numerical  

Many software requires genotype data in the numerical format. GAPIT can perform such 

conversion with a few lines of code as follows.  

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE)  

myGAPIT <- GAPIT(G=myG, output.numerical=TRUE)  
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myGD= myGAPIT$GD  

myGM= myGAPIT$GM 

• User-inputted Kinship Matrix and Covariates 

This scenario assumes that the user provides a kinship matrix and covariate file. The kinship 

matrix or covariates (e.g., PCs) may be calculated previously or from third party software e.g., 

STRUCTURE 2.3.4. When the PCs are input in this way, the parameter “PCA.total” should 

be set to 0 (default). Otherwise, PCs will be calculated within GAPIT, resulting in a singular 

design matrix in all model fitted for GWAS. The analysis can be performed by typing these 

command lines: 

#Step 1: Set data directory and import files  

myY <- read.table("mdp_traits.txt", head = TRUE)  

myG <- read.table("mdp_genotype_test.hmp.txt", head = FALSE)  

myKI <- read.table("KSN.txt", head = FALSE)  

myCV <- read.table("Copy of Q_First_Three_Principal_Components.txt", head = TRUE)  

#Step 2:  

Run GAPIT myGAPIT <- GAPIT(  

Y=myY,  

G=myG,  

KI=myKI,  

CV=myCV  

) 
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GWAS data analysis in rrBLUP: - 

Genomic selection has been emerged in plant and animal breeding selection paradigm, with 

the advent of inexpensive and high-throughput genotyping technologies in the last decade. 

Genomic selection allows the prediction of the phenotypes of individuals based on known 

marker effects or genetic relationships (kinship-based), and in plants it has been used for 

predicting trait performance of hybrids and unrealized crosses. Genomic predictions can be 

made by estimating marker effects (rrBLUP). rrBLUP has been developed primarily for 

genomic prediction with mixed models (but it can also do genome-wide association mapping 

with GWAS). Ridge Regression (rr) is one of the first statistical method proposed for genomic 

selection was a called, where the ridge parameter (λ) can be observed in a mixed model 

framework as the σ2e / σ2u ratio between the residual and random effect variances. This can 

be applied in the genomic context where σ2u is the genetic variance and best linear unbiased 

predictor (BLUP) can be interpreted as the genomic estimated breeding values (GEBV), where 

the random effect refers to genotype effects and the variance-covariance structure is the 

additive or genomic relationship matrix (A or Ag). The genetic variance can also be interpreted 

in terms of marker effects in the form of marker-based BLUPs. 

Phenotypes are considered following a normal probability model, there are a broad class of 

models that can apply to continuous and discrete phenotypes analysis. The R software is free 

and open-source statistical software that can be downloaded for Windows, Mac OS X, or Linux 

from https://www.r-project.org/. From the left side of the website click on CRAN 

(Comprehensive R Archive Network), select the appropriate CRAN Mirror, and select the 

appropriate operating system and install it into your computer following on-screen prompts for 

installation. Once in your computer, rrBLUP package needs to be installed by using the next 

command. 

>install.packages(“rrBLUP”)  

•  GWAS Study in rrBLUP 

Read phenotypes and check the assumptions of the models. 

pheno <- read.csv("phenoat.csv",header=T); 

dim(pheno) 

head(pheno) ## GID ENV Yield 
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str(pheno) 

hist(pheno$Yield,xlab="Yield",main="Histogram Yield") 

shapiro.test(pheno$Yield) 

boxplot.yield<- boxplot(pheno$Yield) 

outliers <- boxplot.yield$out; outlier 

pheno <- pheno[-which(pheno$Yield%in%outliers),] 

shapiro.test(pheno$Yield) 

pheno <- na.omit(pheno) 

The code above indicates if there are outliers on the phenotypic data. After removing the 

outliers, we cannot reject the Shapiro–Wilk normality test indicating that yield data are now 

normal. Last line in code is to eliminate any possible missing data (NA). 

 
Read genotypes and filtering. 
 

geno <- read.csv("genoat.csv",header=T,row.names = 1); 

dim(geno) 

map <- read.csv("mapoat.csv",header=T,stringsAsFactors 

=F,row.names=1); dim(map) 

geno[1:5,1:5] ### View genotypic data. 

map[1:5,1:3] 

 

The next step is to filter the genotypic data. Filtering conditions will depend on researcher 

criteria. The code below represents a simple function to remove individuals and markers that 

does not met the criteria establish by the researcher. The function will remove individuals with 

more than a certain percentage of missing data, markers with a greater proportion of a threshold 

missing percentage, and also markers with a high proportion of heterozygous calls. 

filter.fun <- function(geno,IM,MM,H){ 

#Remove individuals with more than a certain % 

missing data individual.missing <- apply(geno,1, 

function(x){ 

return(length(which(is.na(x)))/ncol(geno)) 

}) 

#Remove markers with certain % missing data 

marker.missing <- apply(geno,2,function(x) 
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{return(length(which(is.na(x)))/nrow(geno)) 

}) 

length(which(marker.missing>0.6)) 

#Remove individuals with high heterozygous calls. 

heteroz <- apply(geno,1,function(x){ 

return(length(which(x==0))/length(!is.na(x))) 

}) 

filter1 <- geno[which(individual.missing<IM), 

which(marker.missing<MM)] 

filter2 <- filter1[,(heteroz<H)] 

return(filter2) 

} 

geno.filtered <- filter.fun(geno[,1:3629],0.4,0.60,0.02) 

geno.filtered[1:5,1:5];dim(geno.filtered) 

 

The lower the minor allele frequency (MAF) the lower the statistical power, because MAF 

increases the variance of the phenotypes associated with the MAF alleles. Therefore, it is 

necessary to filter them and the most standard way is to eliminate markers with less than 5 % 

of MAF. Minor allele frequency will be removed using the A.mat function within the rrBLUP 

package. 

Imputation of the genotype file, and performing the Kinship matrix. 

 

The main idea behind imputation is to predict (or ‘impute’) the missing data based upon the 

observed data. Imputation is now routinely used to facility genotyped studies by increasing 

the power of the analysis. Here, “A.mat” function from rrBLUP package is used for 

imputation. A.mat has two options for imputation (https://cran.r-

project.org/web/packages/rrBLUP/rrBLUP.pdf). One is to replace missing data with the 

population mean for that marker, or using an expectation maximization (EM) algorithm based 

on the multivariate normal distribution. 

library(rrBLUP) 

Imputation <- A.mat(geno.filtered,impute.method="EM", 

return.imputed=T,min.MAF=0.05) 

K.mat <- Imputation$A ; dim(K.mat) ### KINSHIP matrix 

geno.gwas <- Imputation$imputed; dim(geno.gwas) #NEW geno data. 
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geno.gwas[1:5,1:5]## view geno 

K.mat[1:5,1:5]## view Kinship 
 

Look for population structure effects. 

An important aspect of GWAS analysis involves examining the population structure (PS). The 

primary purpose of conducting this examination is that, due to different genetic histories, 

various subpopulations may exhibit differences in allele frequencies for numerous 

polymorphisms across the genome. If these populations display varying overall phenotypic 

values, any polymorphisms that show differing frequencies between the populations may be 

linked to the phenotype, even though they are not necessarily causal or in strong linkage 

disequilibrium with the true causal polymorphisms. To visualize the structure of our 

populations, we utilize principal component analysis (PCA) on genotypic data with the “svd()” 

function in R.  

Population structure accounted by PCA is limited to correcting for spurious associations on a 

global level of genetic variation. Thereby, PS does not adequately capture the relatedness 

between individuals, and this relationship between genotypes (K, kinship matrix) needs also 

be taking into account on the analysis. Not taking into account of PS, K as well as a potential 

confounding between the phenotype and the genotype effects, could lead to unrealistic 

assessments in GWAS analysis. 

geno.scale <- scale(geno.gwas,center=T,scale=F) # Data needs to be center. 

Svdgeno <- svd(geno.scale) 

PCA <- geno.scale%*%svdgeno$v #Principal components 

colnames(PCA) <- paste("PCA",1:ncol(PCA),sep="") 

PCA[1:5,1:5] 

plot(round((svdgeno$d)^2/sum((svdgeno$d)^2) 

,d=7)[1:10],type="o",main="Screeplot",xlab="PC 

As",ylab="% variance") 

PCA1 <- 100*round((svdgeno$d[1])^2/sum((svdgeno$d)^2),d=3); PCA1 

PCA2 <- 100*round((svdgeno$d[2])^2/sum((svdgeno$d)^2),d=3); PCA2 

Eucl <- dist(geno.gwas) # Euclinean distance 

Fit <- hclust(Eucl,method="ward") # Ward criterion makes clusters with same size. 

groups2 <- cutree(fit,k=2) # Selecting two clusters. 

table(groups2) #Number of individuals per cluster. 

plot(PCA[,1],PCA[,2],xlab=paste("Pcomp:",PCA1,"%",sep=""),ylab=paste("Pcomp:",PCA2,

"%",sep=""),pch=0,cex=0.7,col=groups2) 

 

Match phenotypes and genotypes. 

 

pheno=pheno[pheno$GID%in%rownames(geno.gwas),] 

pheno$GID<-factor(as.character(pheno$GID), 
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levels=rownames(geno.gwas)) #to assure same levels on both files 

##Creating file for GWAS function from rrBLUP 

package X<-model.matrix(~-1+ENV, data=pheno) 

pheno.gwas <- data.frame(GID=pheno$GID,X,Yield= 

pheno$Yield) head(pheno.gwas) 

geno.gwas <- geno.gwas[rownames(geno.gwas)%in% 

pheno.gwas$GID,] 

pheno.gwas <- pheno.gwas[pheno.gwas$GID%in% 

rownames(geno.gwas),] 

geno.gwas <- geno.gwas[rownames(geno.gwas)%in% 

rownames(K.mat),] 

K.mat <- K.mat[rownames(K.mat)%in%rownames(geno. 

gwas),colnames(K.mat)%in%rownames(geno.gwas)] 

pheno.gwas <- pheno.gwas[pheno.gwas$GID%in% 

rownames(K.mat),] 

geno.gwas <-geno.gwas[,match(map$Markers,colnam 

es(geno.gwas))] head(map) 

geno.gwas <- geno.gwas[,colnames(geno.gwas)%in%map$Markers] 

map <- map[map$Markers%in%colnames(geno.gwas),] 

geno.gwas2<- data.frame(mark=colnames(geno.gwas), 

chr=map$chrom,loc=map$loc,t(geno.gwas)) 

dim(geno.gwas2) 

colnames(geno.gwas2)[4:ncol(geno.gwas2)] <-rownames(geno.gwas) 

head(pheno.gwas) 

geno.gwas2[1:6,1:6] 

K.mat[1:6,1:6] 

 
 

Perform GWAS function from rrBLUP with and without population structure effects 

and Kinship matrix. 

 

A statistically significant association between a genotypic marker and a particular trait is 

considered to be a proof of linkage between the phenotype and a casual locus. Generally, PS 

leads to spurious associations between markers and a trait, so that a statistical approach must 

account for PS. In this analysis, four different statistical models were performed. 

(a) Naïve model without controlling for PS or family relatedness (gwasresults). 

(b) Controlling for PS effects (Q model, gwasresults2). 

(c) Controlling just for relatedness (K model, gwasresults3). 

(d) Controlling for both Q and K effects (Q + K model, gwasresults4). 

## gwasresults<-GWAS(pheno.gwas,geno.gwas2, fixed= colnames(pheno.gwas)[2:5], K=NULL, 
plot=T,n.PC=0) 
##gwasresults2<-GWAS(pheno.gwas,geno.gwas2, fixed=colnames(pheno.gwas)[2:5], K=NULL, 
plot=T,n. PC=6) 
##gwasresults3<-GWAS(pheno.gwas,geno.gwas2, fixed=colnames(pheno.gwas)[2:5], K=K.mat, 
plot=T,n. PC=0) 
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##gwasresults4<-GWAS(pheno.gwas,geno.gwas2, fixed=colnames(pheno.gwas)[2:5], K=K.mat, 
plot=T,n. PC = 6) 
 

Manhattan and Q-Q plot graphs. 

#LetÂ´s see the structure 

str(gwasresults) 

str(gwasresults) 

#First 3 columns are just the information from markers and map. 

#Fouth and next columns are the results form GWAS. Those values are already 

#the  -log10 pvalues, so no more transformation needs to be done to plot them. 

pdf("Figure5.pdf",width = 7) 

  par(mfrow=c(2,2)) 

  N <- length(gwasresults$Yield) 

  expected.logvalues <- sort( -log10( c(1:N) * (1/N) ) ) 

  observed.logvalues <- sort( gwasresults$Yield) 

    plot(expected.logvalues , observed.logvalues, main="NaÃ¯ve model(K=NULL,n.PC=0)",  

       xlab="expected -log pvalue ",  

       ylab="observed -log p-values",col.main="blue",col="coral1",pch=20) 

  abline(0,1,lwd=3,col="black") 

    N1 <- length(gwasresults2$Yield) 

  expected.logvalues1 <- sort( -log10( c(1:N1) * (1/N1) ) ) 

  observed.logvalues1 <- sort( gwasresults2$Yield) 

    plot(expected.logvalues1 , observed.logvalues1, main="Q model (K=NULL,n.PC=6)",  

       xlab="expected -log pvalue ",  

       ylab="observed -log p-values",col.main="blue",col="coral1",pch=20) 

  abline(0,1,lwd=2,col="black") 

   N2 <- length(gwasresults3$Yield) 

  expected.logvalues2 <- sort( -log10( c(1:N2) * (1/N2) ) ) 

  observed.logvalues2 <- sort( gwasresults3$Yield) 

    plot(expected.logvalues2 , observed.logvalues2, main="K model (K=Kmat,n.PC=0)",  

       xlab="expected -log pvalue ",  

       ylab="observed -log p-values",col.main="blue",col="coral1",pch=20) 

  abline(0,1,lwd=2,col="black") 

    N3 <- length(gwasresults4$Yield) 
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  expected.logvalues3 <- sort( -log10( c(1:N3) * (1/N3) ) ) 

  observed.logvalues3 <- sort( gwasresults4$Yield) 

    plot(expected.logvalues3 , observed.logvalues3, main="Q+K model (K.mat,n.PC=6)",  

       xlab="expected -log pvalue ",  

       ylab="observed -log p-values",col.main="blue",col="coral1",pch=20) 

  abline(0,1,lwd=2,col="black") 

  dev.off() 

  MANHATTAN PLOT 

  #False Discovery Rate Function 

  FDR<-function(pvals, FDR){ 

    pvalss<-sort(pvals, decreasing=F) 

    m=length(pvalss) 

    cutoffs<-((1:m)/m)*FDR 

    logicvec<-pvalss<=cutoffs 

    postrue<-which(logicvec) 

    print(postrue) 

    k<-max(c(postrue,0)) 

    cutoff<-(((0:m)/m)*FDR)[k+1] 

    return(cutoff) 

  } 

    alpha_bonferroni=-log10(0.05/length(gwasresults$Yield)) ###This is Bonferroni correcton 

  alpha_FDR_Yield <- -log10(FDR(10^(-gwasresults$Yield),0.05))## This is FDR cut off 

 

MANHATTAN PLOT 

  pdf("Figure6.pdf",width=8,height=8) 

  par(mfrow=c(2,2)) 

  plot(gwasresults$Yield,col=gwasresults$chr,ylab="-log10.pvalue", 

       main="NaÃ¯ve model (K=NULL,n.PC=0)",xaxt="n",xlab="Position",ylim=c(0,14)) 

  #axis(1,at=c(1:length(unique(gwasresults$chr))),labels=unique(gwasresults$chr)) 

  axis(1,at=c(0,440,880,1320,1760)) 

  abline(a=NULL,b=NULL,h=alpha_bonferroni,col="blue",lwd=2) 

  abline(a=NULL,b=NULL,h=alpha_FDR_Yield,col="red",lwd=2,lty=2) 
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  legend(1,13.5, c("Bonferroni","FDR") ,  

         lty=1, col=c('red', 'blue'), bty='n', cex=1,lwd=2) 

   

  plot(gwasresults2$Yield,col=gwasresults2$chr,ylim=c(0,14),ylab="-log10.pvalue", 

       main="Q model (K=NULL,n.PC=6)",xaxt="n",xlab="Position") 

  axis(1,at=c(0,440,880,1320,1760)) 

  abline(a=NULL,b=NULL,h=alpha_bonferroni,col="blue",lwd=2) 

  abline(a=NULL,b=NULL,h=alpha_FDR_Yield,col="red",lwd=2,lty=2) 

  legend(1.5,13.5, c("Bonferroni","FDR") ,  

         lty=1, col=c('red', 'blue'), bty='n', cex=1,lwd=2) 

   

  plot(gwasresults3$Yield,col=gwasresults3$chr,ylim=c(0,14),ylab="-log10.pvalue", 

       main="K model (K=K.mat,n.PC=0)",xaxt="n",xlab="Position") 

  axis(1,at=c(0,440,880,1320,1760)) 

  abline(a=NULL,b=NULL,h=alpha_bonferroni,col="blue",lwd=2) 

  abline(a=NULL,b=NULL,h=alpha_FDR_Yield,col="red",lwd=2,lty=2) 

  legend(1.5,13.5, c("Bonferroni","FDR") ,  

         lty=1, col=c('red', 'blue'), bty='n', cex=1,lwd=2) 

    plot(gwasresults4$Yield,col=gwasresults4$chr,ylim=c(0,14),ylab="-log10.pvalue", 

       main="Q+K model (K=K.mat,n.PC=6)",xaxt="n",xlab="Position") 

  axis(1,at=c(0,440,880,1320,1760)) 

  abline(a=NULL,b=NULL,h=alpha_bonferroni,col="blue",lwd=2) 

  abline(a=NULL,b=NULL,h=alpha_FDR_Yield,col="red",lwd=2,lty=2)##FDR gives inf for 

Yield 

  legend(1,13.5, c("Bonferroni","FDR") ,  

         lty=1, col=c('red', 'blue'), bty='n', cex=1,lwd=2) 

  dev.off() 

  WHICH ARE HITS? 

  which(gwasresults$Yield>alpha_bonferroni) 

  which(gwasresults$Yield>alpha_FDR_Yield) 

  which(gwasresults2$Yield>alpha_bonferroni) 

  which(gwasresults2$Yield>alpha_FDR_Yield) 
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  which(gwasresults3$Yield>alpha_bonferroni) 

  which(gwasresults3$Yield>alpha_FDR_Yield) 

  which(gwasresults4$Yield>alpha_bonferroni) 

  which(gwasresults4$Yield>alpha_FDR_Yield) 

  markers.gwasresults4.bonf<- geno.gwas[,c(53,56,57,1054,1427)]#gwasresults3 and 4 have    

   same hits. 

  markers.gwasresults2.bonf <- geno.gwas 
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The role of Genomic-enabled Prediction in Plant Breeding began in the 1980s. With the 

emergence of various molecular marker systems, the availability of polymorphic markers for 

plant breeders and molecular biologists has significantly increased. Among these systems, 

single nucleotide polymorphisms (SNPs) stand out as the most prominent high-throughput 

genotyping (HTG) method. SNPs have been widely used in discovering quantitative trait loci 

(QTLs). Over 10,000 QTLs have been reported in more than 120 studies covering 12 different 

plant species (Bernardo, 2008), with the goal of improving quantitative traits of economic 

importance. Initially, molecular markers were integrated into conventional phenotypic 

selection (PS) by applying marker-assisted selection (MAS). For simple traits, MAS involves 

selecting individuals that possess QTL-associated markers with significant effects, while 

markers that do not show a significant association with a trait are excluded. However, attempts 

to enhance complex quantitative traits using QTL-associated marker detection have been 

unsuccessful due to the difficulties in identifying the same QTL across multiple environments 

(due to QTL  environment interactions) or in varying genetic backgrounds (Bernardo, 2016). 

Genomic selection is an upgrading form of marker-assisted selection for quantitative traits, and 

it differs from the traditional marker assisted selection in that markers in the entire genome are 

used to predict genetic values and the QTL detection step is skipped. Genomic selection holds 

the promise to be more efficient than the traditional marker-assisted selection for traits 

controlled by polygenes. 

Linkage analysis used for QTL mapping is typically carried out on biparental populations, but 

it has a limited ability to identify marker–trait associations due to chromosomes exhibiting low 

recombination rates. Consequently, association mapping emerged in the early 2000s with the 

aim of enhancing the power of linkage analysis, enabling the identification of marker–trait 

associations in non-biparental populations and the fine mapping of chromosome segments 

characterized by high recombination rates. However, the main problem of fine-association 
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mapping is the limited power to detect rare variants that may be associated with economically 

important traits (Bernardo, 2016). Thus, the difficulty of association mapping and QTL 

detection lies in the identification and quantification of rare QTLs with minor effects for 

economically important traits that are highly influenced by the environment. However, due to 

the substantial reduction in the costs of SNP assays, the possibility of using high-density SNP 

arrays (containing tens of thousands of markers) has resulted in the development of statistical 

models to predict marker–trait association accurately, based on the genetic architecture of the 

trait being assessed (Crossa et al., 2017). 

Contrary to QTL and association mapping, Genomic Selection (GS) utilises all 

molecular markers for GP of the performance of the candidates for selection. Consequently, 

the purpose of GS is to estimate breeding and/or genetic values. GS integrates both molecular 

and phenotypic information from a training population (TRN) to derive the genomic estimated 

breeding values (GEBVs’) for individuals in a testing population (TST) that have been 

genotyped but not phenotyped (Meuwissen 2001). Figure 1A illustrates the two basic 

populations in a GS program: the TRN data, whose phenotype and genotype are known, and 

the TST data, whose genetic values are to be predicted. GS replaces the need for phenotyping 

for a few selection cycles. The main advantages of GS compared to traditional phenotype-

based selection in breeding include a reduction in the cost per cycle and the time needed for 

variety development. For instance, in maize breeding, a breeder can evaluate 50% of all 

available lines through testcrossing in first-stage multi-locational trials, allowing the 

phenotypic data to be used for predicting the other 50% by GS. Figure 1B illustrates the 

advantage of GS over PS with respect to: (i) potentially lowering costs by up to 50%; and (ii) 

saving time by selecting lines directly for stage II instead of going through stage I, as required 

in PS. This significantly lowers the expenses associated with forming testcrosses and 

evaluating them at each stage of multi-location evaluations. The time efficiency gained over 

PS may arise from the second selection cycle, which employs the TRN from the previous cycle 

to predict the new doubled haploid (DH) lines, thereby omitting the need for testcross formation 

and first-stage multilocation evaluation trials. Based on Genomic Selection process, the best 

lines could go directly to the second stage of multi-location evaluations. 
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Figure 1 A 

 

Figure 1 B 
Figure 1. Populations Utilized in Genomic Selection and a Scheme of Phenotypic and Genomic Selection in 

Maize Breeding. (A) Genomic selection (GS) necessitates a training population (TRN) that has undergone both 

genotyping and phenotyping, along with a testing population (TST) that has been genotyped but not phenotyped. 
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(B) Reduction of cycle duration in maize through GS using doubled haploids (DH) crossed with a tester (TC). 

(Crossa et al., 2017) 

Genomic Selection estimates the breeding values (BVs) of the candidates chosen for selection. 

BVs consist of two components: the parental average (the mean BV of both parents) and the 

deviation of progeny performance from this average, which results from Mendelian sampling. 

In traditional breeding, the parental average is determined using pedigree data (when genealogy 

is accessible), allowing for the creation of a relationship matrix A among individuals. 

Mendelian sampling evaluates within-family variability, which is measured through progeny 

testing in multi-environment field trials. Genomic Selection takes advantage of dense markers 

to assess Mendelian sampling, thereby eliminating the need for extensive progeny 

phenotyping. This approach accelerates the process by shortening the breeding cycle while 

boosting the expected genetic gain and selection response over time; it also minimizes resource 

usage compared to extensive phenotyping. GS holds the potential of rapidly enhancing 

complex traits with low heritability and significantly lowering the cost involved in developing 

lines and hybrids. GS is also applicable to simple traits with higher heritability than complex 

traits, for which high GP accuracy is anticipated. The implementation of GS in plant breeding 

may face limitations due to 2 key factors: (i) the expenses associated with genotyping; and (ii) 

a lack of clear guidance on where Genomic Selection can be applied most effectively within 

breeding programs. 

GS and GP have been utilised through two distinct approaches. One method concentrates on 

predicting additive effects in the early generations of a breeding program (F2:3) to enable a 

rapid selection cycle with a short interval (i.e., GS at the F2 level of a biparental cross). In this 

scenario, researchers aim to anticipate the breeding values (BVs) instead of the total genetic 

value; thus, additive linear models that compile the effects of the markers are adequate. The 

alternative method predicts individuals' complete genetic values by considering both additive 

and nonadditive (dominance and epistasis) effects, which allows for estimating the cultivars' 

performance (commercial value). The genetic values of lines are predicted for specific 

environments using an incomplete (sparse) multi-environment testing framework. 

Several genetic and statistical factors hinder the effective use of GP. Genetic challenges arise 

from the size and diversity of the TRN population, as well as the heritability of the traits being 

predicted. Statistical challenges are linked to the high dimensionality of marker data, where the 
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number of markers (p) greatly exceeds the number of observations (n) (p>>n), along with the 

multicollinearity present among markers (where adjacent markers show significant 

correlation). 

Genomic-Enabled Prediction Models and Applications Coping with Complexity: The 

complexity of implementing GP in breeding occurs at various levels and is influenced by 

several factors. When a trait is influenced by a large number of loci, the accuracy of GP depends 

on several genetic factors: (i) the size and genetic variation within the training population 

(TRN) and its relationship with the test population (TST) (Pszczola et al., 2012); specifically, 

whether the cultivars in the TRN are closely or distantly related to those in the TST group; (ii) 

the heritability of the traits being selected [complex traits characterized by low heritability and 

small marker effects are suitable for GS and GP, while traits that are less complex (with high 

heritability) can be effectively predicted using a limited number of markers that have relatively 

significant effects]; and (iii) for complex traits involving numerous markers that do not exhibit 

linkage disequilibrium (LD) with the quantitative trait loci (QTL), the accuracy of GP 

decreases (Daetwyler et al. 2010) but improves as heritability and TRN size increase. Studies 

have shown the significance of choosing an appropriate TRN population that enhances the 

accuracy of the predictions for non-phenotyped cultivars within the TST population (Isidro, et 

al. 2015). Depending on the trait, the enhancement in Genomic Prediction accuracy tends to 

reach a saturation point as the population size grows. A similar pattern has been observed 

regarding the number of markers (Lorenz, et al. 2012 and Arruda, et al. 2015). 

A significant genetic-statistical challenge of genomic prediction (GP) models occurs when 

forecasting non-phenotyped individuals in particular environments (site-year combinations) by 

integrating genotype-by-environment (GxE) interactions into the statistical frameworks. 

Equally significant is the genomic complexity associated with GxE interactions for multiple 

traits; such interactions formulate trait and environmental structures that should be addressed 

using statistical-genetic models which utilise multi-trait, multienvironment variance-

covariance, as well as genetic correlations among environments, traits, and between traits and 

environments, simultaneously. Untangling the complexities of multi-trait genomics and diverse 

environments necessitates a theoretical framework that considers these complex interactions 

(Montesinos-López, et al. 2016). Interestingly, employing GP to enhance disease resistance in 

wheat has proven to be difficult for two primary reasons: (i) selection for dominant resistance 

genes can be ephemeral owing to shifts in pathogen races; and (ii) breeding for minor resistance 
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genes with small effects throughout genomic selection (GS), which offers sustained resistance, 

may encounter the typical challenges associated with GS (Poland and Rutkoski, 2016). 

Another level of complexity arises in GS statistical prediction models due to the scenario where 

the number of markers (p) exceeds the population size (n), combined with the high correlation 

among the predictors (markers). This situation leads to a deficiency in the rank of the predictor 

matrix, rendering it impossible to calculate least-squares estimates for the effects of markers. 

The challenges arises from factors such as the issues related to dimensionality; specifically, in 

models where p is much greater than n, which are not likelihood identified and susceptible to 

overfitting, there may be spurious features and data structures captured (refer to ‘The 

complexity of genomic selection and prediction’ and ‘Solution to an inverse problem’ in the 

supplementary online information). Potential solutions to these challenges include: (i) the use 

of penalized regression; (ii) variable selection techniques; and (iii) dimensionality reduction 

methods (e.g., principal components), which create a new set of uncorrelated predictors from 

the original markers, thus facilitating the application of univariate distributions and reducing 

the computation time for estimates and predictions. A fourth approach involves utilising 

statistical models that evaluate the complexities of GP alongside high-density marker platforms 

and G x E interactions, thereby enhancing the strength of GP models. Generally, theoretical 

investigations indicate good prediction accuracies for complex traits like grain yield and other 

traits assessed using independent random cross-validation data partitioning. In contrast to the 

common application of GP for predicting the performance of a single trait in TST populations 

using data from the same trait observed in TRN populations, the complexities of extending this 

approach to multi-trait GP indices have not been extensively explored, apart from a method 

proposed by Cerón-Rojas, which is based on the multi-trait Genomic Best Linear Unbiased 

Estimator (GBLUP) selection index, that worked well when tested on both simulated and real 

data sets (Crossa et al., 2017). 

Simulation and empirical findings derived from random cross-validation indicate that GS 

improves genetic gains by either accelerating the breeding process (rapid selection cycles) or 

increasing the efficiency of field evaluations. The outcomes of applying random cross-

validation on maize and wheat breeding datasets demonstrate that GS can substantially improve 

prediction accuracy concerning pedigree and MAS for traits with low heritability. The 

application of GS in the breeding of maize and wheat shows its effectiveness in selection 

processes. 
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Breeding programs globally have been exploring and implementing GS and GP across various 

crops. Concurrently, significant research has led to the development of innovative statistical 

techniques that incorporate pedigree, genomic data, and environmental covariates (such as 

weather data) into statistical-genetic prediction models. GBLUP models are commonly 

employed in GP, and enhancing GBLUP to account for GxE interactions has increased the 

accuracy of predicting cultivars that have not yet been observed in specific environments. New 

approaches for evaluating the accuracy of GP in the context of discrete response variables (like 

ordinal disease data, rates, count data, etc.) have been introduced, along with Bayesian genomic 

models designed for the analysis of multiple traits across various environments. A 

computationally efficient Markov Chain Monte Carlo (MCMC) method has been established, 

which yields full conditional distributions of the parameters, facilitating exact Gibbs sampling 

for posterior distributions. Findings from simulated scenarios and two extensive data sets 

indicate that when the correlation among traits is significant, a model employing an 

unstructured covariance matrix is more effective than diagonal and conventional methods for 

enhancing prediction accuracy for grain yield. Conversely, in situations where correlations are 

low, the standard model suffices.  

In a study on chickpeas, a total of 320 elite breeding lines were genotyped using Diversity 

Array technology (DArTseq) and phenotyped for yield-related traits across two environments 

under two treatments (i.e., rainfed and irrigated) during two different seasons. Multiple 

statistical models (RR-BLUP, Kinship GAUSS, Bayes Cp, Bayes B, Bayesian LASSO, and 

random forest regression or RFR) achieved high prediction accuracies for the targeted traits; 

however, minimal variation in prediction accuracy among the models was observed. 

Incorporating population structure into the model resulted in a slight enhancement of prediction 

accuracies for days to maturity (DM), days to flowering (DF), and seed dry weight (SDW), but 

not for seed yield (SY) (Roorkiwal et al. 2016, Varshney, R.K. 2016). 

Integrating high-density marker platforms with GxE interactions enhances the accuracy of GP 

models; this has been thoroughly studied in bread wheat, maize, and legumes. In every GP 

model that includes GxE interactions, the accuracy compared to single-environment analyses 

improved by an average of 10–40% across all three crop types. The primary models utilised to 

evaluate GP accuracy by incorporating GxE interactions and their application to real data are 

outlined below. 
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Multienvironment trials for assessing GxE interactions play a crucial role in plant breeding by 

helping to select lines that perform well and exhibit stability across different environments. 

Burgueño et al. (2012) were pioneers in applying marker- and pedigree-based GBLUP models 

to evaluate GxE interactions in the context of genomic prediction, while Heslot et al. (2014) 

integrated crop-modeling data to analyze genomic GxE interactions. Jarquín et al. (2014) 

developed a reaction norm model that extends the traditional GBLUP model by incorporating 

both main and interaction effects of markers along with environmental covariates, utilising 

high-dimensional random variance-covariance structures. 

Genetic Gains from Rapid Selection Cycle GS: There are few studies that assess the genetic 

gains achieved through a rapid selection cycle based on GS. The initial research confirming 

the potential of a rapid selection cycle in GP of biparental populations, along with earlier results 

from random cross-validation studies, was carried out by Massman et al. (2013) and indicated 

that GS enhanced maize genetic gains over time. Genetic advancements were also reported by 

Asoro et al. (2013) in oats and by Rutkoski et al. (2015) in wheat, illustrating that both GS and 

PS produced comparable realised genetic gains over time. 

Another instance of genetic gains resulting from rapid-cycle GS on CIMMYT maize involves 

two biparental maize populations (F2:3) from Asia (CAP1 and CAP2) that were created and 

assessed for testcross performance in both drought and optimal conditions (Vivek et al., 2017). 

The annual genetic gains for PS compared to GS in drought conditions were 0.067 t/ha versus 

0.124 t/ha for CAP1, and 0.076 t/ha versus 0.104 t/ha for CAP2. In optimal conditions, the 

corresponding annual genetic gains for PS versus GS were 0.084 t/ha versus 0.140 t/ha for 

CAP1, and 0.123 t/ha versus 0.13 t/ha for CAP2. The findings of this research demonstrated 

that GS of superior plant phenotypes led to rapid genetic advancements in drought tolerance in 

maize. 

The primary goal of GS is to lower the costs associated with phenotyping by utilising markers 

and to enhance genetic gains, while the purpose of high-throughput techniques is to assess 

high-density phenotypes for a vast number of individuals or breeding lines over time and 

varying locations using remote or proximal sensing methods. This approach can boost both the 

accuracy and intensity of selection and, as a result, improve the selection response while also 

reducing phenotyping costs. The main concept of high-throughput is to employ secondary traits 
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that are linked to grain yield, disease resistance, or end-use quality, which can be advantageous 

in the early-generation evaluation of lines. 

Predicting hybrid performance in rice using genomic best linear unbiased prediction 

Genomic selection for enhancing pure breeds relies on marker information, resulting in cost 

reductions by allowing early selection prior to measuring phenotypes. When this approach is 

applied to hybrid breeding, it is expected to be even more effective since the genotypes of 

hybrids are predetermined by their inbred parent lines. In the case of rice, researchers have 

introduced and employed a sophisticated technique to predict hybrid performance, utilising a 

subset of all possible hybrids as a training sample to estimate trait values for all potential 

hybrids. This technique is referred to as genomic best linear unbiased prediction. The 

technology utilised for hybrids is known as genomic hybrid breeding. They selected 278 

hybrids randomly, originating from 210 recombinant inbred lines of rice, to serve as a training 

sample and used them to predict the performance of all 21,945 potential hybrids. The average 

yield of the top 100 selected hybrids demonstrates a 16% improvement compared to the 

average yield of all potential hybrids. This novel strategy of marker-based yield prediction for 

hybrids acts as a proof of concept for a new technology that could potentially transform hybrid 

breeding (Shizhong Xua et al., 2014). 

Genomic Selection and Association Mapping in Rice 

Genomic Selection (GS) represents an innovative breeding technique where genome-wide 

markers are utilized to estimate the breeding value of individuals within a breeding population. 

Research has demonstrated that GS enhances breeding efficiency in dairy cattle and various 

crop species, with scientists assessing its effectiveness for the first time in breeding inbred rice 

lines. They conducted a genome-wide association study (GWAS) alongside five-fold GS cross-

validation using a population of 363 elite breeding lines from the International Rice Research 

Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The 

population was genotyped with 73,147 markers through genotyping-by-sequencing. The 

training population, the statistical method used to construct the GS model, the number of 

markers, and the traits assessed to evaluate their impact on prediction accuracy. For all three 

traits analyzed, genomic prediction models surpassed predictions based solely on pedigree 

information. Prediction accuracies ranged between 0.31 and 0.34 for grain yield and plant 

height, while flowering time achieved an accuracy of 0.63. Analyses of subsets from the 
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complete marker set suggest that utilizing one marker every 0.2 cM is adequate for genomic 

selection in this collection of rice breeding materials. The RR-BLUP statistical method 

exhibited the best performance for grain yield in cases where no significant effect QTL were 

identified by GWAS, whereas for flowering time, where a significant large effect QTL was 

found, the non-GS multiple linear regression method outperformed GS models. In the case of 

plant height, where four midsized QTL were identified by GWAS, random forest produced the 

most consistently accurate GS models. These findings indicate that GS, guided by GWAS 

insights into genetic architecture and population structure, has the potential to become a 

powerful tool for enhancing the efficiency of rice breeding as genotyping costs continue to 

decrease (Jennifer et al., 2015). 

Concluding Remarks: Numerous statistical techniques have been established to estimate 

unobserved individuals in genomic selection (GS). Generally, linear models (such as GBLUP) 

and machine-learning approaches have proven effective in identifying intricate patterns and 

making accurate decisions based on available data. Kernel-based techniques, including 

reproducing kernel Hilbert spaces (RKHS), have frequently provided reliable genomic 

predictions in plant science. Various statistical models derived from the conventional GBLUP 

that account for genotype-by-environment (GxE) interactions in genomic and pedigree 

assessments have significantly enhanced the accuracy of forecasting unobserved individuals 

across different environments. These GS prediction models can assist researchers in various 

fields to create plants that can withstand drought and heat by leveraging favorable GxE 

interactions. It is crucial to model multi-trait multi-environment scenarios to enhance the 

predictive accuracy of the performance of newly developed lines in the coming years.  

The application of statistical models in advanced hyperspectral imaging technology for high 

throughput, along with genomic and pedigree data during early-stage testing, provides a chance 

to speed up genetic improvements by intensifying selection efforts. Deep machine-learning 

techniques that utilize neural networks seem to hold promise for enhancing the precision of 

genomic-enabled predictions. Genomic selection distinctly outperforms pedigree breeding and 

marker-assisted selection (MAS) in advancing genetic improvements for complex traits. The 

effective combination of genotyping platforms with accurate phenotyping systems will further 

improve prediction accuracy and expedite genetic progress by reducing the breeding cycle 

duration. Additional research is needed to integrate genomic selection with high throughput as 

a standard element in plant breeding initiatives.  
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Developing GP models for gene bank accessions will be crucial to access unexplored diversity 

and accelerating the integration of valuable traits into breeding programs. At present, GS is the 

most promising method of breeding for enhancing the speed of developing and releasing new 

genotypes; thus, utilizing GS to establish gene pools and populations from diverse gene bank 

accessions deserves thorough and focused investigation, particularly in light of the 

susceptibility of elite lines and hybrids to the severe impacts of climate change. 

R codes to implement GS models (Source: Osval et al., 2019) 

# Clear the memory 

rm(list=ls()) 

library(BMTME) 

library(BGLR) 

pheno=read.table(file="nlow.txt",header=T) 

geno=read.table(file="Geno.txt",header=T) 

head(pheno) 

tail(pheno) 

dim(pheno) 

#Genomic relationship matrix 

geno[1:10,1:10] 

dim(geno) 

#Design matrices# 

LG <- cholesky(geno) 

ZG <- model.matrix(~0 + as.factor(pheno$Line)) 

Z.G <- ZG%*%LG 

pheno1 <- data.frame(GID = pheno[, 1], Env = pheno[, 2], 

                     Response = pheno[, 3]) 

nCV=5 

CrossV <- CV.KFold(pheno1, DataSetID = 'GID', K = nCV, set_seed = 123) 

CrossV$CrossValidation_list  

y2=(pheno[, 3]) 

length(2) 

y=y2 

tst_set=CrossV$CrossValidation_list[[1]] 

tst_set 

#Predictor eta=mu+G# 

ETA=list(Gen=list(X=Z.G, model="BRR")) 

y[tst_set]=NA 

fm1=BGLR(y=y,ETA=ETA,nIter=1000,burnIn=500,verbose = F) 

#str(fm1) 

#Prediction of testing set# 

predicted=c(fm1$yHat[tst_set])  

Observed=y2[tst_set] 

plot(Observed,predicted) 

MSE=mean((Observed-predicted)^2) 

MSE 
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Obs_Pred=cbind(Observed,predicted) 

Obs_Pred 

colnames(Obs_Pred)=c("Observed","Predicted") 

head(Obs_Pred) 

plot(Observed,predicted) 

#Five fold cross validation with predictor Predictor eta=mu+G 

Ave_MSE=c() 

for (i in 1:nCV){ 

  y=y2 

  #Five hold-out Cross validation# 

  tst_set=CrossV$CrossValidation_list[[i]] 

  tst_set 

    #Predictor eta=mu+G# 

  ETA=list(Gen=list(X=Z.G, model="BRR")) 

  y[tst_set]=NA 

    fm1=BGLR(y=y,ETA=ETA,nIter=1000,burnIn=500,verbose = F) 

  #str(fm1) 

  #Prediction of testing set# 

  predicted=c(fm1$yHat[tst_set])  

  Observed=y2[tst_set] 

  plot(Observed,predicted) 

  MSE=mean((Observed-predicted)^2) 

  MSE 

  Ave_MSE=c(Ave_MSE,MSE) 

} 

Ave_MSE 

Ave1=mean(Ave_MSE) 

Conclusion 

Genomic selection facilitates the rapid selection of elite genotypes with accelerated speed of 

breeding cycle. Genomic selection (GS) is an advanced selection procedure over MAS. As it 

aims to use genome-wide markers to estimate the effects of all loci and thereby compute a 

genomic estimated breeding value (GEBV), to achieve more comprehensive and reliable 

selection. Major challenge in genomic prediction (GP) is well documented p>n statistical 

problem. Many models have been proposed to overcome this problem. At the end, no single 

models are universally applicable in all kinds of data set, based on the assumptions of the data 

set one must choose proper model. On other hand, machine learning models are the promising 

alternative to statistical models in genomic selection. 
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Introduction 

Selection index, a pivotal quantitative genetic tool in plant breeding, facilitates the 

simultaneous improvement of multiple traits, enhancing the efficiency and precision of 

breeding programs. It is a statistical method employed to predict the breeding value of an 

individual based on multiple traits, each weighted by its economic or agronomic importance 

(Sivakumar et al., 2017). The selection index is constructed as a linear combination of 

phenotypic values, with the weights assigned to each trait determined to maximize the 

correlation between the index and the aggregate genotype or breeding value (Villanueva et al., 

2006). The primary objective of utilizing a selection index is to identify and select superior 

individuals that possess a desirable combination of traits, thereby accelerating genetic progress 

(Batista et al., 2021). In essence, the selection index serves as a powerful tool for plant breeders 

to make informed decisions regarding which individuals to select and propagate, ultimately 

leading to the development of improved crop varieties. 

The efficacy of selection indices hinges on several key factors, including the accurate 

estimation of genetic variances and covariances among traits, the determination of appropriate 

economic weights, and the consideration of genotype-by-environment interactions. Genetic 

variances and covariances provide insights into the genetic architecture of the traits and their 

interrelationships, enabling breeders to predict the response to selection. Economic weights 

reflect the relative importance of each trait in terms of its contribution to overall economic 

value or agronomic performance, guiding the selection process towards the most desirable trait 

combinations. Furthermore, accounting for genotype-by-environment interactions is crucial to 

ensure that the selected individuals exhibit consistent performance across diverse 

environmental conditions. 
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Background of Plant Breeding 

Plant breeding, at its core, is an evolutionary process guided by human intervention, aiming to 

create crop varieties that are better suited to meet human needs and preferences. Traditional 

breeding methods, relying on phenotypic selection and hybridization, have been instrumental 

in shaping the genetic makeup of our cultivated plants over centuries. Breeders historically 

selected superior individuals based on phenotypic observations, which served as proxies for 

their breeding value, or the anticipated performance of their progeny (Allier et al., 2019). In 

order to more accurately assess the breeding value of individuals, phenotypic selection has 

been supplemented by pedigree-based prediction of breeding values and, more recently, 

genomic prediction of breeding values, which makes use of the accessibility of affordable high-

density genotyping (Allier et al., 2019). 

However, these conventional approaches often lack precision in manipulating and selecting 

specific genes, potentially leading to unintended consequences (Aziz & Masmoudi, 2024). 

With the advent of molecular biology and genomics, plant breeding has undergone a 

revolutionary transformation, enabling breeders to manipulate genes with unprecedented 

precision. The integration of molecular markers and genomic information has revolutionized 

plant breeding, enabling breeders to make more informed decisions and accelerate the pace of 

genetic improvement (Anand et al., 2023). Modern breeding objectives have evolved beyond 

merely enhancing yield to encompass improved quality and other value-added characteristics 

(Baenziger et al., 2006).  

Importance of Selection in Plant Breeding 

Selection is an important part of plant breeding because it helps breeders find and promote 

plants with the best traits, which eventually leads to the creation of better crop types. It is an 

ongoing cycle that involves choosing superior plants from a population and using them to 

produce the next generation, with the ultimate goal of improving desired traits such as yield, 

quality, disease resistance, and abiotic stress tolerance. Breeders can effectively gather and 

focus beneficial genes over time by carefully selecting plants, increasing the frequency of 

favourable alleles within the population. The selection process is also essential for preserving 

genetic diversity in breeding populations to guarantee continued genetic advancement in the 

long run (Li et al., 2022).  
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Plant breeders can respond to changing consumer demands, environmental constraints, and 

market opportunities by using selection strategies that enable them to successfully adjust to 

new breeding goals. Marker-assisted selection has become a valuable tool in plant breeding, 

allowing for the selection of plants based on the presence of specific DNA markers associated 

with desired traits (Lema, 2018). Using selection indices, breeders can simultaneously select 

for multiple traits, considering their economic or agronomic importance (Pérez‐de‐Castro et 

al., 2012). By integrating biotechnology and genetic engineering into plant breeding, breeders 

can now introduce novel genes and traits into crop plants that were previously unattainable 

through conventional breeding methods (Low et al., 2018). This capability has revolutionized 

the improvement of crops by enabling the precise manipulation of plant genomes (Arora & 

Narula, 2017).  

The selection index is a pivotal statistical tool in plant breeding, designed to enhance the 

efficiency and effectiveness of selecting superior individuals from a population (Valente et al., 

2013). In cases where selection pressure has been mostly focused on production, the genetic 

diversity of numerous functional traits has diminished as a result of the negative antagonistic 

correlation with productivity traits and the absence of selection pressure to improve them 

(Sánchez-Molano et al., 2016). The selection index combines information from multiple traits 

into a single score, which is then used to rank and select individuals based on their overall merit 

(Rembe et al., 2022). The selection index, typically represented as a linear combination of 

multiple traits, provides a comprehensive measure of an individual's genetic worth, enabling 

breeders to make more informed selection decisions (Chung & Liao, 2020). This approach is 

especially valuable when dealing with complex traits that are influenced by multiple genes and 

environmental factors (Govindaraj et al., 2015).  

Objectives of Selection Index 

The primary objective of the selection index is to improve the overall genetic merit of a 

population by selecting individuals that possess the most desirable combination of traits 

(Natalini et al., 2021). Maximizing genetic gain is the overarching goal of any breeding 

program, and the selection index is designed to achieve this by identifying individuals with the 

highest breeding values for the traits of interest. The key objectives of utilizing a selection 

index include simultaneous improvement of multiple traits, weighting traits according to their 

economic or agronomic importance, and accounting for correlations among traits. It is essential 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 210 - 
 

to consider the heritability of each trait when constructing a selection index. By incorporating 

heritability estimates into the index, breeders can more accurately predict the response to 

selection and make more informed decisions. Selection indices are also used to maximize the 

probability of generating top-performing offspring from selection candidates (Niehoff et al., 

2024). 

Additionally, breeders can effectively manage resources by focusing selection efforts on the 

most promising individuals and traits. In situations where heritability is considerably greater 

under non-stressful conditions than it is under stressful ones, an index that combines data from 

both types of settings is anticipated to be more efficient than selection that is only based on 

stress environment evaluation (Baker, 1994). Breeders can create more resilient and adaptive 

crops by including stress tolerance traits in selection indices, allowing them to adapt to 

changing environmental conditions. Selection indices offer a transparent and repeatable 

framework for assessing and selecting individuals, improving consistency and objectivity in 

the breeding process.  

When multiple traits are assessed, it is useful to create an index, known as a selection index, 

that integrates data on all of the characteristics related to the dependent variable, such as yield 

(Abu-Ellail et al., 2020). A selection index is constructed using statistical procedures to provide 

a single value representing the overall merit of an individual based on its performance across 

multiple traits (Rehman et al., 2019). The index is calculated by weighting each trait based on 

its economic value and genetic correlation with other traits (McCarthy et al., 2007; Miglior et 

al., 2017). The use of computer science breakthroughs in recent years has made it possible to 

test novel statistical methods for simulating uncertainty in multi-trait selection in order to 

enhance selection (Akdemir et al., 2018).  

Theoretical Basis of Selection Index 

The theoretical basis of the selection index lies in the principles of quantitative genetics and 

statistical prediction. The foundation of the selection index is the concept of breeding value, 

which represents the genetic merit of an individual for a particular trait. The use of selection 

indices relies on the assumption that the traits included in the index are heritable, meaning that 

a portion of the observed variation in these traits is due to genetic factors. The basic form of a 

selection index can be expressed as:  

I = b1X1 + b2X2 + ... + bnXn,  
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where I is the index value,  

X1 is the phenotypic value for the ith trait,  

and bi is the weight assigned to the ith trait.  

The weights assigned to each trait in the index are calculated to maximize the correlation 

between the index value and the aggregate genotype, which represents the overall genetic merit 

of an individual.  

The selection index can be optimized using different statistical methods, such as multiple 

regression or best linear unbiased prediction. The weights are typically estimated using 

statistical methods that consider the genetic and phenotypic variances and covariances among 

the traits (Lopez‐Cruz & Campos, 2021). The accuracy of the selection index depends on the 

accuracy of the estimates of genetic and phenotypic parameters, as well as the number of traits 

included in the index. The use of a selection index can improve the efficiency of selection by 

allowing breeders to simultaneously consider multiple traits and select individuals with the best 

combination of desirable characteristics (Shah et al., 2016). 

The selection index allows researchers to give each genomic region the weight it deserves in a 

breeding program by integrating the methodology with affordable, high-density markers, 

which facilitates the transition from selection based on a combination of "infinitesimal" effects 

plus a few major QTL to selection that captures all QTL effects. However, for the foreseeable 

future, gathering high-quality trait information will remain essential to using these technologies 

(Haley & Visscher, 1998). The development of selection indices requires careful consideration 

of the objectives of the breeding program, the traits to be included in the index, and the 

statistical methods used to estimate the weights. 

Basic Principles 

The creation and application of selection indices are based upon certain fundamental principles 

that ensure their efficacy in enhancing genetic progress. It is crucial to carefully define the 

breeding goal in order to identify the traits that are most important for enhancing the 

population's overall merit. The economic value of each trait should be determined based on its 

contribution to the overall profitability or value of the crop.  

Additionally, one should consider the genetic parameters, including heritability, genetic 

correlations, and phenotypic correlations, among the traits included in the index. These 
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parameters are used to determine the weights assigned to each trait in the index. Statistical 

methods, such as multiple regression or best linear unbiased prediction, are used to estimate 

the weights that maximize the correlation between the index value and the aggregate genotype. 

The breeder should consider the accuracy of the selection index to determine how well it 

predicts the breeding value of an individual.  

The selection index should be validated using independent data sets to ensure that it accurately 

predicts the performance of individuals in different environments. Breeders should routinely 

monitor the genetic gain achieved through selection to ensure that the selection index is 

effective in improving the population's overall merit. Breeders can maximize genetic progress 

and create superior cultivars that satisfy the demands of farmers and consumers by adhering to 

these fundamental principles.  

Mathematical Model of Selection Index 

The mathematical model of the selection index provides a quantitative framework for 

combining information on multiple traits to predict the overall genetic merit of an individual 

(Villanueva et al., 2006). The index is constructed as a linear combination of phenotypic 

values, with each trait weighted by a coefficient that reflects its relative importance and genetic 

relationship with other traits. The selection index (I) can be expressed mathematically as 

follows: I = b1X1 + b2X2 + ... + bnXn. In this equation, I represents the index value, which is a 

measure of the overall merit of an individual; Xi represents the phenotypic value for the ith 

trait, which is the observed measurement of that trait for the individual; and bi represents the 

weight assigned to the ith trait, which reflects its relative importance and genetic relationship 

with other traits.  

The weights (bi) are calculated to maximize the correlation between the index value (I) and the 

aggregate genotype (H), which represents the true genetic merit of an individual. The aggregate 

genotype is defined as a linear combination of the breeding values for the traits included in the 

index: H = a1g1 + a2g2 + ... + angn. Here, H represents the aggregate genotype, which is a 

measure of the overall genetic merit of an individual; gi represents the breeding value for the 

ith trait, which is the genetic contribution of the individual to the next generation for that trait; 

and ai represents the economic weight assigned to the ith trait, which reflects its relative 

importance in determining overall merit. 
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The weights (bi) in the selection index equation are calculated to maximize the correlation 

between the index value (I) and the aggregate genotype (H). This maximization is typically 

achieved using statistical methods that consider the genetic and phenotypic variances and 

covariances among the traits. The accuracy of the selection index depends on the accuracy of 

the estimates of genetic and phenotypic parameters, as well as the number of traits included in 

the index (Paikhomba et al., 2014). The genetic gain can be considerably increased when 

crosses are selected based on their genomic usefulness criterion compared to selection based 

on mean genomic estimated breeding values (Lehermeier et al., 2017). In each cycle of a line 

or a hybrid breeding program, lines are selected which serve as the parents of the crosses from 

which the base population of the next breeding cycle is derived (Osthushenrich et al., 2017). 

Assumptions Underlying Selection Index 

The selection index method relies on several key assumptions to ensure its effectiveness and 

accuracy in predicting genetic merit. One critical assumption is the linearity of the relationship 

between the index and the aggregate genotype; this assumes that the traits included in the index 

combine additively to determine overall merit, without significant interactions or non-linear 

effects (Foulley & Rouvier, 1971).  

Another assumption is the accuracy of the estimated genetic and phenotypic parameters. 

Accurate estimates of heritability, genetic correlations, and phenotypic correlations are 

essential for calculating the index weights and predicting the response to selection. The third 

important assumption is the normality of the data, where the phenotypic values and breeding 

values of the traits are normally distributed.  

Additionally, the selection index assumes a constant economic weight for each trait across 

different environments and populations. However, economic conditions, consumer 

preferences, or market demands can change, rendering the original weights obsolete.  

The selection index method also assumes that there is no genotype-by-environment interaction. 

Genotype-by-environment interaction occurs when the performance of a genotype differs 

across different environments. When genotype-by-environment interaction is present, the 

selection index may not accurately predict the performance of individuals in all environments.  
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Construction of Selection Index 

The construction of a selection index is a multi-step process that requires careful consideration 

of the traits to be included, the estimation of genetic and phenotypic parameters, and the 

calculation of index weights. The breeder must define the breeding goal and identify the traits 

that contribute to it to begin constructing a selection index. The selection index is particularly 

useful in plant breeding programs, enabling breeders to improve multiple traits simultaneously 

(Batista et al., 2021). Selection index can be constructed by several different methods. 

First, the breeder must define the breeding objective and identify the traits that contribute to it. 

For example, a breeder may want to improve yield, disease resistance, and grain quality in a 

wheat variety. In order to better estimate the breeding value of individuals, phenotypic selection 

has been complemented by pedigree-based prediction of breeding values and more recently by 

genomic prediction of breeding values, taking advantage of the availability of cheap high-

density genotyping (Allier et al., 2019). 

Second, the breeder must estimate the genetic and phenotypic variances and covariances among 

the traits. This information is needed to calculate the index weights and predict the response to 

selection. The larger the databases are growing, the better statistical approaches for genomic 

selection will be available (Weckwerth et al., 2020).  

Third, the breeder must assign economic weights to each trait. The economic weights reflect 

the relative importance of each trait in determining overall merit. Economic weights can be 

difficult to determine, especially for traits that do not have a direct economic value. 

 Fourth, the breeder must calculate the index weights. The index weights are calculated to 

maximize the correlation between the index value and the aggregate genotype. The selection 

index method is used to select the best individuals from a population based on their index 

values.  

Defining Selection Objectives 

Defining selection objectives is a crucial first step in constructing a selection index, as it sets 

the direction and priorities for the breeding program. The goal of defining selection objectives 

should be specific, measurable, achievable, relevant, and time-bound.  

A well-defined selection objective provides a clear target for the breeding program and helps 

to guide the selection of traits to be included in the index. The selection objectives should be 
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aligned with the overall goals of the breeding program and should reflect the needs of the target 

market or consumer. The efficient estimation of marker effects in plant breeding is enhanced 

by the increasing volume of genotypic and phenotypic data (Xavier, 2019).  

Choosing Traits to Include in the Index 

Selecting the appropriate traits to include in a selection index is a critical decision that can 

significantly impact the effectiveness of the breeding program. Traits should be heritable, 

meaning that they are influenced by genetic factors and can be passed down from parents to 

offspring.  

The traits should be easy to measure and should have a low cost of measurement. Traits should 

be genetically correlated with other important traits.  

Estimating Genetic and Phenotypic Parameters 

Estimating genetic and phenotypic parameters is a crucial step in constructing a selection index, 

as these parameters provide the foundation for calculating index weights and predicting 

response to selection. These estimates provide insights into the genetic architecture of the traits, 

the extent to which they are influenced by environmental factors, and the relationships among 

them (Dekkers et al., 2021).  

Heritability estimates the proportion of phenotypic variance that is due to genetic factors 

(Nagalakshmi et al., 2018). Genetic correlation measures the degree to which two traits are 

influenced by the same genes. Phenotypic correlation measures the degree to which two traits 

are associated with each other, regardless of the underlying genetic or environmental causes.  

With high-density molecular marker data and phenotypic data, genomic prediction is now a 

standard method in many plant and animal breeding programs (Heslot & Feoktistov, 2020). 

The usefulness criterion, which accounts for variation in progeny variance, is a measure of the 

gain that can be obtained from a specific cross (Lehermeier et al., 2017).  

Calculating Index Weights 

Calculating index weights is a central step in constructing a selection index, as these weights 

determine the relative contribution of each trait to the overall index value. The index weights 

are calculated to maximize the correlation between the index value and the aggregate genotype 

(Osthushenrich et al., 2018).  
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The selection index method is a powerful tool for improving multiple traits simultaneously in 

plant breeding programs (Heslot & Feoktistov, 2020). A selection index was used as a 

comprehensive index for selecting high-yielding genotypes and explained a substantial 

proportion of grain yield variation (Abdolshahi et al., 2015). Selection for traits like grains 

spike is a good selection criteria and can be effective for future breeding programs (Jan et al., 

2015).  

The basic assumption underlying genomic selection is the presence of markers throughout the 

genome, some of which exhibit direct linkage with causal loci (Lenz et al., 2017). Genomic 

prediction models are initially developed using phenotypic and genotypic data from a training 

population (Chung & Liao, 2020). These models can then estimate the genetic values of 

genotypes that haven't been phenotyped, enhancing evaluations, especially when phenotypic 

data is scarce, like in early selection phases (Werner et al., 2020). This is because genomic 

selection uses genome-wide markers to predict genomic estimated breeding values, allowing 

for early selection of superior individuals, potentially without needing to phenotype them 

(O’Connor et al., 2021).  

Genomic selection's effectiveness hinges on improvements in genotyping technology, 

statistical computing, and user-friendly software. It aims to boost genetic gain per unit of time 

compared to phenotypic selection, yet its practical use in plant breeding is still developing 

(Werner et al., 2020). Maximizing the effectiveness of genomic selection within breeding 

programs is essential to boost genetic advancements (Atanda et al., 2020). Computational 

algorithms employing genomic prediction are vital for strategically selecting breeding 

individuals, determining optimal cross numbers, and managing progeny production under 

constraints (Zhang & Wang, 2022). The integration of genomic data has revolutionized plant 

breeding, facilitating the identification and selection of plants with desirable traits, like drought 

tolerance, thereby optimizing resource utilization and reducing the need for extensive field 

testing (Moeinizade et al., 2019).  

Validating the Selection Index 

Validating the selection index is a crucial step to ensure that it is effective in improving the 

desired traits in the target population. It is important to apply genomic selection at the 

appropriate stage of the breeding cycle (Juliana et al., 2018). By reducing generation intervals 

and accurately evaluating traits early on, genomic selection proves to be an effective tool for 
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accelerating genetic gain in plant breeding (Lin et al., 2014). Genomic selection enhances 

genetic progress by predicting performance, even before phenotypic characterization.  

Applying the Selection Index in a Breeding Program 

The selection index is used to evaluate and rank individuals in the breeding population. The 

selection index can also be used to predict the response to selection. By utilizing genomic 

selection, plant breeders can enhance selection intensity, shorten breeding cycles, and boost 

prediction accuracy (Allier et al., 2019). Integrating genotyping data into breeding programs 

requires efficient DNA extraction and marker production to enable timely selection decisions 

(Nti-Addae et al., 2019). 

An extension to genomic selection, called optimal haploid value selection, predicts the best 

doubled haploid that can be produced from a segregating plant (Daetwyler et al., 2015). This 

method is particularly useful in hybrid breeding programs, enabling breeders to identify 

superior parental lines and hybrid combinations early in the breeding process (Chen et al., 

2023). Recurrent genomic selection, which involves repeatedly selecting and intercrossing the 

best individuals based on genomic predictions, can lead to long-term genetic gain in breeding 

populations (Gorjanc et al., 2018). Genomic selection has the potential to transform plant 

breeding by accelerating the rate of genetic gain and improving the efficiency of breeding 

programs (Pégard et al., 2020). Genomic approaches, when combined with hybridization and 

selection strategies that are based on a physiological understanding, can increase rates of 

genetic gains (Reynolds et al., 2010). Balancing genotyping costs with the potential advantages 

of rapid genetic improvement is crucial for plant breeders (Cockerton et al., 2021). 

 Genomically enabled prediction has great potential to accelerate the rate of genetic gain in 

plant breeding programs, complementing traditional breeding and marker-assisted selection 

strategies (Krishnappa et al., 2021). Genomically assisted selection has been proven to improve 

yield in plant breeding and reduce the time between breeding cycles (Vanavermaete et al., 

2020).  

Types of Selection Indices 

Different types of selection indices are available, each designed to address specific breeding 

objectives and genetic architectures. These indices vary in complexity and assumptions, 
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offering breeders a range of options to tailor their selection strategies. Selection index includes 

the base index, restricted selection index, and independent culling levels.  

Smith-Hazel Index 

The Smith-Hazel index, one of the earliest and most fundamental selection indices, forms the 

cornerstone of multi-trait improvement in plant breeding. The Smith-Hazel index is a linear 

combination of traits, weighted by their economic values and genetic variances and 

covariances. This index aims to maximize the genetic gain in an aggregate economic value, 

considering the genetic relationships among traits. The Smith-Hazel index relies on accurate 

estimates of genetic parameters, which can be challenging to obtain in practice. The Smith-

Hazel index provides a powerful framework for selecting superior individuals based on 

multiple traits. 

Base Index 

The base index method involves creating a selection index by summing up the product of the 

economic weight and the breeding value for each trait. The economic weight for each trait 

indicates its relative importance in determining the overall merit of an individual (Niehoff et 

al., 2024). The base index is suitable for situations where the economic values of the traits are 

well-defined.  

Restricted Selection Index 

The restricted selection index is used when breeders want to improve certain traits without 

changing others. This method involves setting constraints on the selection process to prevent 

undesirable changes in specific traits. The restricted selection index is useful in situations 

where there are specific market requirements or regulatory constraints that need to be met.  

The effectiveness of the selection index depends on the accurate estimation of genetic 

parameters and economic weights.  

Economic Selection Index 

The economic selection index aims to optimize the economic value of the selected individuals 

or lines. By incorporating economic data, the economic selection index helps breeders make 

informed decisions that align with market demands and profitability goals. 
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Package Key Use Cases Strengths Notes 

SelectionIndex 

Classical, restricted, 

and ideal genotype 

indices 

Direct functions for 

Smith-Hazel, restricted, 

and ideal index 

Most 

recommended for 

teaching and 

applied breeding 

sommer 

BLUP estimation, 

variance components, 

genetic correlation 

Can be used to derive 

genetic (G) matrix, 

heritability 

Powerful for multi-

environment data 

rrBLUP 
Genomic selection 

BLUPs 

Can provide GEBVs for 

use in index 

Often used before 

index construction 

AGHmatrix 
Relationship matrices 

from markers/pedigree 

Helps build 

additive/dominance 

matrices 

Supports genomic 

selection index 

asreml-R 
Mixed models for 

breeding data 

Commercial, but gold 

standard in variance 

modelling 

Needed for large 

breeding trials 

lme4 Simple mixed models 
Free and easy for single-

trait models 

Can extract BLUPs 

as inputs for index 

psych 
Trait correlation and 

factor analysis 

Helps evaluate 

redundancy among traits 

Useful for index 

trait selection 

FactoMineR / 

PCAmixdata 

PCA-based trait 

weighting or index 

Helps construct 

synthetic indices 

Useful when trait 

weighting is 

ambiguous 

tidyverse (esp. 

dplyr, ggplot2) 

Data wrangling and 

visualization 

Helps format, filter, rank 

and plot index results 

Essential for 

report-ready 

outputs 

BGLR 
Bayesian genomic 

prediction 

For use in genomic 

selection indices 

Can estimate 

marker effects and 

GEBVs 

 

Step-by-Step Procedure to Construct a Selection Index in R 

✓ Step 1: Prepare Your Data 

You need: 

• Phenotypic data (trait values per genotype) 

• Genotypic or pedigree data (optional but useful for building relationship matrices) 

Example phenotypic dataset: 

Genotype Yield Height Tiller 

G1 50.2 145.0 4.1 

G2 52.3 140.2 3.9 

... ... ... ... 

✓  

✓ Step 2: Install and Load Required R Packages 
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install.packages(c("AGHmatrix", "SelectionIndex", "tidyverse")) 

library (AGHmatrix)        # For relationship matrices 

library (SelectionIndex)   # To compute selection index 

library (tidyverse)        # For data manipulation and plotting 

✓ Step 3: Simulate or Import Your Data 

A. Simulated Genotypic Data (if you don’t have SNPs) 

geno <- matrix(sample(0:2, 1000, replace = TRUE), nrow = 10) 

rownames(geno) <- paste0("G", 1:10) 

B. Simulated Phenotypic Data 

traits <- data.frame( 

  ID = rownames(geno), 

  Yield = rnorm(10, 50, 5), 

  Height = rnorm(10, 150, 10), 

  Tiller = rnorm(10, 4, 1) 

✓ Step 4: Build Relationship Matrix (optional but recommended) 

Using SNP data → G-matrix via AGHmatrix 

CopyEdit 

G <- Gmatrix(SNPmatrix = geno, method = "VanRaden", ploidy = 2) 

✓ Step 5: Compute Phenotypic and Genetic Covariance Matrices 

trait_data <- traits[, c("Yield", "Height", "Tiller")] 

# Phenotypic variance-covariance matrix (P) 

P <- cov(trait_data) 

# Define heritabilities for traits (estimated or assumed) 

herit <- c(0.4, 0.5, 0.3) 

# Genetic variance-covariance matrix (G) 

G_mat <- P * diag(herit) 

✓ Step 6: Define Economic Weights 

Economic weights (vector b) reflect trait importance: 

b <- c(1.0, -0.3, 0.5)  # Ex: Increase Yield, reduce Height, moderate Tiller 

✓ Step 7: Compute the Selection Index 

index_result <- SelIndex(P = P, G = G_mat, b = b) 

# Attach index to the genotype data 
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traits$SelectionIndex <- index_result$Index 

✓ Step 8: Rank and Visualize Genotypes 

traits %>% 

  arrange(desc(SelectionIndex)) %>% 

  ggplot(aes(x = reorder(ID, SelectionIndex), y = SelectionIndex)) + 

  geom_col(fill = "darkgreen") + 

  coord_flip() + 

  theme_minimal() + 

  labs(title = "Genotype Ranking by Selection Index", 

       x = "Genotype", y = "Selection Index") 

Advantages and Limitations 

The selection index offers several advantages, including increased selection efficiency and the 

ability to handle multiple traits simultaneously. However, it also has limitations, such as the 

requirement for accurate parameter estimates and the potential for reduced genetic diversity. 

When utilizing index selection in the case of non-additive traits, it's important to note a couple 

of issues: Firstly, CCPS selects animals individually, while non-additive effects manifest in the 

progeny and subsequent descendants of mating pairs (Li et al., 2006). Consequently, the actual 

genetic gain observed in the offspring of CCPS-selected parents may not align precisely with 

predictions. Secondly, for traits governed by non-additive genetic factors, the relationship 

between an animal's genotype and its breeding value is not linear.  

Advantages of Using Selection Index 

Selection indices offer breeders a systematic and quantitative approach to improve multiple 

traits simultaneously. By combining information from multiple traits into a single index, 

selection indices can increase the efficiency of selection compared to single-trait selection (Li 

et al., 2006). Selection indices allow breeders to balance the improvement of different traits 

based on their relative economic importance.  

Limitations and Challenges 

The success of selection indices depends on accurate estimates of genetic parameters such as 

heritabilities and genetic correlations. These limitations highlight the importance of careful 
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planning, data collection, and validation when using selection indices in plant breeding 

programs. 

Although selection indices provide a rational means of selection, improvement is often limited 

to the traits included in the index. Another challenge is that traits may also have non-linear 

relationships or diminishing returns, which are not well-captured by linear selection indices.  

Strategies to Overcome Limitations 

Genomic selection offers a promising avenue to overcome some of the limitations associated 

with traditional selection indices (Jannink, 2010). By integrating genomic information into the 

selection process, breeders can improve the accuracy of selection and accelerate genetic gain 

(Esfandyari et al., 2015). The effectiveness of genomic selection depends on the size and 

composition of the reference population used for the breeding objective (Grevenhof & Werf, 

2015). By leveraging genomic data and optimizing selection strategies, breeders can minimize 

inbreeding while maximizing genetic gain (Sonesson et al., 2012). Corrective mating programs 

are widely used in some species, and these can be modified to consider selection for economic 

merit adjusted for inbreeding depression (Weigel, 2001).  

Conclusion 

Selection indices play a crucial role in modern plant breeding by enabling breeders to make 

informed decisions and maximize genetic gain. Selection index theory has provided a valuable 

framework for breeders to make selection decisions when multiple traits are considered. By 

carefully considering the objectives, traits, and genetic parameters involved, breeders can 

design effective selection indices that drive crop improvement and meet the challenges of a 

changing world. However, in modern breeding programs, rapid genetic progress can lead to 

inbreeding via heavy impact of a few selected individuals or families (Weigel, 2001). 

Therefore, selection indices need to be combined with proper mating strategies to control 

inbreeding while maximizing genetic gain (Voss‐Fels et al., 2019). The creation of new 

populations from local landraces can help to alleviate the environmental effects impacting 

yields and can be used in breeding programs to select new and improved populations (Masoni 

et al., 2019). Genomic selection can improve breeding efficacy by shortening the breeding 

cycle and facilitating the selection of candidate lines for creating hybrids without phenotyping 

in various environments (Liu et al., 2019). Commonly employed marker-assisted selection 

strategies are not well suited for complex traits of agronomic importance, which necessitates 
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additional time for field-based phenotyping to pinpoint agronomically superior lines. Genomic 

selection represents an emerging alternative to marker-assisted selection that uses all marker 

information to calculate genomic estimated breeding values for complex traits, thus selections 

are made directly on GEBV without further phenotyping (Heffner et al., 2010). In ryegrass, 

simulations showed a four-year reduction in cycle time, with genetic gain doubling or tripling 

when GS is incorporated into the breeding program (Zhao et al., 2023). . It is essential to 

consider the optimization of mating strategies in GS breeding programs to balance short- and 

long-term genetic gain when selecting crosses (Allier et al., 2019). 

Future Directions in Selection Index Research 

Further research is needed to refine selection index methodologies, develop new approaches 

for incorporating non-linear relationships, and integrate genomic information into selection 

indices. 
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Metagenomics: Introduction and Applications 
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Overview  

The field of metagenomics represents a revolutionary approach to understand microbial 

ecosystems through direct analysis of genetic material extracted from environmental systems. 

Metagenomics removes the traditional need of culturing individual microorganisms, enabling 

researchers to explore the vast universe of unculturable microbial life forms. Metagenomics 

studies provide unprecedented insights into the structural organization, biodiversity patterns, 

and metabolic capabilities of complex microbial systems across diverse habitats ranging from 

terrestrial to aquatic systems and host-associated environments. The integration of next-

generation sequencing platforms has transformed this area, allowing for in-depth 

characterization of microbial community architecture and functional dynamics. 

The computational demands of metagenomic research requires analytical frameworks and 

standardized processing protocols to ensure data integrity and meaningful biological 

interpretation. Advanced bioinformatics tools serve as the foundation for sequence assembly, 

functional annotation, and ecological analysis, enabling the identification of genetic 

polymorphisms, metabolic pathways, and inter-species relationships within complex microbial 

networks. 

2. Agricultural Applications of Metagenomics Analysis 

2.1. Soil Ecosystem Enhancement: Metagenomic analysis of agricultural soils reveals the 

intricate microbial networks responsible for biogeochemical cycling and fertility maintenance. 

This allows for the discovery of beneficial microorganisms that enhance soil productivity and 

plant nutrition, potentially reducing dependency on synthetic fertilizers. 

2.2. Plant-Microbe Interaction Studies: Investigation of plant-associated microbial 

communities through metagenomic analysis promotes understanding of beneficial symbiotic 

relationships. This analysis identifies plant growth-promoting bacterial populations that 

enhance nutrient acquisition and stress tolerance in crop species. 
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2.3. Resistance Gene Identification: Metagenomic studies enables tracking of antimicrobial 

resistance determinants across agricultural landscapes, supporting the development of 

containment strategies to prevent their proliferation. 

2.4. Climate Adaptation Strategies: Understanding plant-microbe interactions through 

metagenomic approaches contributes to developing climate-resilient agricultural practices by 

elucidating adaptive mechanisms in changing environmental conditions. 

3. Different Metagenomics Approaches 

3.1. Whole-Genome Shotgun Sequencing: This approach captures the complete genetic 

repertoire present in environmental samples through unbiased sequencing of entire genetic 

material. The methodology provides: 

• Complete genomic coverage without selective targeting 

• Elimination of PCR-associated biases through direct sequencing 

• Requires extensive sequencing coverage to achieve adequate representation 

• Generation of complex datasets demands advanced computational analysis 

• Capability for comprehensive functional gene discovery and pathway elucidation 

• Detailed characterization of microbial community composition including rare taxa 

3.2. Targeted Amplicon Sequencing: This approach employs specific markers for microbial 

identification and characterization: 

• Utilization of taxonomically informative gene sequences (e.g., 16S ribosomal RNA) 

• Implementation of PCR amplification with associated methodological biases 

• Reduced sequencing requirements offering cost-effective analysis 

• Simplified datasets compatible with standard analytical tools 

• Primary application in taxonomic profiling of microbial assemblages 

• Widespread adoption in ecological and environmental research 

4. Steps in metagenomics data analysis  

An overview of the key steps involved in metagenomics data analysis is provided below: 

4.1 Sample Acquisition and Processing: Environmental sample collection employs different 

techniques to prevent contamination and preserve microbial community integrity. Subsequent 

DNA extraction utilizes optimized protocols to maintain nucleic acid quality and quantity. 

4.2 Library Construction and Sequencing: Preparation of sequencing libraries involves DNA 

fragmentation and adapter ligation, followed by high-throughput sequencing using platforms 

such as Illumina, PacBio, or Oxford Nanopore technologies. 
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4.3 Quality Control and Data Preprocessing: Raw sequencing data undergoes rigorous quality 

assessment using specialized software (FastQC, MultiQC) to identify issues associated with 

low-quality reads, adapter contamination, and sequencing artifacts. Data cleaning procedures 

remove poor-quality sequences and adapter sequences using tools like Trimmomatic or 

Cutadapt. 

4.4 Sequence Assembly and Validation: Processed reads are assembled into contiguous 

sequences using specialized assemblers (SPAdes, MEGAHIT) designed for metagenomic data 

complexity. Assembly quality assessment employs tools like QUAST and MetaQUAST, 

followed by binning procedures to reconstruct metagenome-assembled genomes. 

4.5 Taxonomic Assignment and Classification: Sequence identification utilizes reference 

databases (SILVA, Greengenes, NCBI) and classification tools (Kraken, QIIME) employing 

various approaches including marker gene analysis, k-mer classification, and alignment-based 

methods. 

4.6 Functional Gene Annotation: Gene identification and annotation within assembled 

sequences uses specialized tools (Prokka, Prodigal, MetaGeneMark) to predict coding regions 

and assign functional categories. 

4.7 Metabolic Pathway Analysis: Functional characterization involves mapping sequences to 

metabolic databases (KEGG, COG) using alignment tools (BLAST, DIAMOND) to 

understand biochemical pathways and cellular processes. Pathway reconstruction involves 

databases like MetaCyc and annotation tools such as eggNOG-mapper. 

4.8 Diversity Assessment and Statistical Analysis: Alpha and beta diversity calculations 

quantify microbial diversity within and between samples using specialized packages (QIIME, 

R vegan). Statistical analysis identifies significant community differences across different 

conditions. 

4.9 Data Visualization and Interpretation: Results presentation employs various graphical 

representations including heatmaps, taxonomic plots, and ordination analyses (PCA, PCoA) to 

illustrate community structure and diversity patterns. Network analysis visualizations reveal 

inter-species relationships and functional connections. 

5. Computational Challenges in Metagenomic Analysis 

5.1 Data Volume and Complexity: Metagenomic studies generate massive datasets ranging 

from gigabytes to terabytes per sample, requiring substantial computational infrastructure for 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 229 - 
 

storage and analysis. The heterogeneous nature of microbial communities complicates 

sequence assembly and functional annotation processes. 

5.2 Assembly Complexity: Metagenomic sequence assembly faces unique challenges due to 

mixed genomic material from multiple organisms, potentially resulting in chimeric assemblies 

and requiring advanced computational approaches. High polymorphism levels can cause 

divergent reads from identical genomic regions to be treated as separate loci. 

5.3 Technological Considerations: Short-read sequencing technologies struggle with 

repetitive genomic regions and elevated error rates, while long-read platforms offer improved 

assembly continuity despite higher error frequencies. Specialized metagenomic assemblers 

have been developed to address these challenges. 

6. Specialized Metagenomic Assembly Tools 

6.1 MetaSPAdes Framework: This comprehensive toolkit handles uneven coverage and strain 

variations through multi-stage assembly approaches, providing high-quality results with 

adequate computational resources. 

6.2 MEGAHIT: An efficient assembler optimized for large-scale metagenomic datasets, 

utilizing succinct de Bruijn graph algorithms with minimal memory requirements and high 

processing speed. 

6.3 IDBA-UD System: Specifically designed for Illumina metagenomic reads, employing 

iterative approaches to enhance assembly quality and handle complex datasets. 

7. Gene Prediction in Metagenomic Context 

Metagenomic gene prediction addresses unique challenges including fragmented contigs, 

incomplete genes, and diverse genetic codes across multiple organisms: 

• Prodigal: Fast, accurate prokaryotic gene prediction handling partial genes 

• MetaGeneMark: Self-training algorithm adapting to sequence GC content 

• FragGeneScan: Hidden Markov model approach for fragmented genes 

• MetaEuk: Profile-based eukaryotic gene prediction 

• EukRep: Separation of eukaryotic from prokaryotic sequences 

• VirFinder/VirSorter: Specialized viral sequence identification 

8. Advanced Annotation Methodologies 

Modern metagenomic annotation faces challenges including data volume, low sequence 

similarity to reference databases, and potential annotation errors. Several innovative 

approaches address these limitations: 
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8.1.MGS-Fast System: Employs Bowtie2 for high-stringency DNA alignment with 

Galaxy workflow integration 

8.2.MetaStorm Platform: Online server supporting custom reference databases with dual 

annotation pipelines 

8.3.MetaLAFFA Pipeline: Snakemake-based workflow for comprehensive functional 

annotation 

8.4.FragGeneScan Method: Combines error models with codon usage patterns for 

improved prediction 

8.5.MetaAnnotator Tool: Focuses on exact k-mer matching with probabilistic taxonomic 

models 

9. Taxonomic Binning approaches 

Taxonomic binning involves assigning sequence fragments to taxonomic categories based on 

various characteristics including sequence similarity, compositional features, and coverage 

patterns. This process enables genome reconstruction and functional annotation of novel 

microbial species. For this purpose, different approaches are utilized. Reference-Dependent 

Methods utilize existing genomic databases for sequence classification, though limited by 

database completeness. Reference-Independent Methods are based on intrinsic sequence 

properties such as k-mer distributions and compositional signatures. Integrated Approaches 

combine multiple methodologies to enhance classification accuracy and efficiency. Different 

binning tools are mentioned below:  

• MGmapper: Reference-based assignment with post-processing optimization 

• CH-Bin: Convex hull distance-based clustering of high-dimensional feature vectors 

• TWARIT: Combines alignment and composition-based approaches 

• MetaCoAG: Dynamic bin adjustment using assembly graph information 

• MetaID: Alignment-free n-gram approach for strain-level identification 

10. Future Perspectives 

The continuous evolution of metagenomic technologies promises enhanced understanding of 

microbial ecology and function. Emerging computational tools improve taxonomic binning 

precision and efficiency, facilitating deeper insights into microbial community dynamics and 

their ecological roles. The integration of advanced sequencing technologies with sophisticated 

analytical frameworks will continue to expand our comprehension of microbial diversity and 

its implications for environmental science, human health, and biotechnological applications. 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 231 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration of generative AI and AI-assisted technologies in the writing process 

During the preparation of this manuscript, authors used SCOPUS AI and CLAUDE for certain 

content and citations. After using these tools/services, the author reviewed and edited the 

content as needed. 

Selected References: 

Behera, B.K., Dehury, B., Rout, A.K. et al. Metagenomics study in aquatic resource 

management: Recent trends, applied methodologies and future needs. Gene Reports, 

2021 

Delitte, M., Caulier, S., Bragard, C., Desoignies, N. Plant Microbiota Beyond Farming 

Practices: A Review. Frontiers in Sustainable Food Systems, 2021 

Key Terminologies in Metagenomics 

• Metagenomics: The study of genetic material recovered directly from 

environmental samples, bypassing the need for culturing organisms in the lab. 

• Microbiome: Collective genomes of the microorganisms in a particular 

environment. 

• Functional Metagenomics: Focuses on identifying and analyzing the 

functional capabilities of microbial communities. 

• Metaproteomics: Study of all proteins expressed by a community of 

organisms in a complex sample at a single point in time. 

• 16S rRNA Gene: A molecular marker widely used for classifying bacteria 

and archaea in metagenomic samples. 

• Next Generation Sequencing (NGS): Advanced sequencing technologies that 

allow for the rapid sequencing of large amounts of DNA, crucial for 

metagenomic studies. 

• Whole Genome Shotgun (WGS) Sequencing: A method where DNA is 

randomly fragmented and sequenced to reconstruct the entire genome. 

• Gene Prediction: The process of identifying the locations of coding regions 

in genomic sequences. 

• Binning: The process of grouping sequences into taxa-based groups using 

sequence similarity or composition methods. 
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Meta-QTL Analysis  

Introduction 

Quantitative Trait Locus (QTL) mapping identifies genomic regions associated with complex 

traits, but individual studies suffer from limited resolution and reproducibility due to 

population-specific effects, environmental interactions, and statistical noise. Meta-QTL 

(MQTL) analysis overcomes these limitations by integrating multiple independent QTL studies 

into a unified statistical framework. This approach refines QTL positions, distinguishes stable 

genomic regions across environments, and enhances candidate gene discovery for marker-

assisted breeding.  The core principle involves projecting QTLs from diverse genetic maps 

onto a high-density consensus map using shared molecular markers. This harmonization allows 

cross-study comparisons and detects overlapping QTL regions. Statistical models (e.g., fixed- 

or random-effects) then estimate the optimal number of "true" MQTLs per chromosome. The 

Akaike (AIC) or Bayesian (BIC) information criterion evaluates model fit, penalizing 

overfitting to identify robust MQTLs.   

Key Advantages: 

1. Increased precision: Confidence intervals (CIs) narrow by 30–60% compared to individual 

studies (Goffinet & Gerber, 2000).   

2. Biological validation: MQTLs with support from >5 underlying QTLs are likelier to 

represent causal loci (Veyrieras et al., 2007).   

3. Breeding relevance: Stable MQTLs guide pyramiding of alleles for complex traits like 

drought tolerance.   

Challenges involve data heterogeneity requiring standardized marker naming and map curation 

and biological variability (e.g., epistasis). Nevertheless, MQTL analysis remains indispensable 

for translating fragmented QTL data into actionable genetic insights.   
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Workflow of BioMercator 4.2.3  

BioMercator 4.2.3 (Sosnowski et al., 2012) is a Windows-based tool automating MQTL 

analysis. Its workflow comprises six stages:   

Install  

BioMercator is a Java program; all you need is Java (v1.5 or above) installed on your machine. 

To install java see http://www.java.com/ unzip the BioMercator archive file in a directory. On  

Windows: Double-click on the BioMercatorV4.jar to launch the program  

On other OS: Open a terminal and execute the command line:  

“java -jar BioMercatorV4.jar” 

 1. Data Preparation   

Input Requirements:   

- Genetic maps: Text files (per chromosome) with columns: `LinkageGroup, MarkerName, 

Position(cM)`.   
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QTL data: CSV files listing `Trait, LinkageGroup, PeakPosition, CI_Left, CI_Right, 

LOD_Score`.   
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Preprocessing:   

- Standardize marker names (e.g., "TaSNP1A_123" → "SNP123").   

- Exclude maps with <10 markers/chromosome to ensure integration quality.   

 

2. Project Setup   

 

- Launch BioMercator → File → New Project → Define species (e.g., Triticum aestivum).   

- Set map unit to centiMorgans (cM).   
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 3. Map Integration   

- Import maps: Maps → Import Map → Load individual linkage maps.   

- Build consensus map:   

  - Tools → Consensus Map → Select maps for integration.   
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  - Parameters:   

    - Weighting: By marker number (favors data-rich maps).   

    - Algorithm: Iterative re-weighting (default).   

  - Execute → Save output (e.g., "Consensus_Chr5B").   

 

Dynamic comparisons 

- Quality control:   

  - Stress value <5% indicates minimal marker order distortion.   

  - Resolve conflicts using physical map coordinates if available.   

 4. QTL Projection   

- Import QTLs: QTLs → Import QTLs → Load study-specific files.   

- Project QTLs:   

  - QTLs → Project QTLs → Target "Consensus_Chr5B".   
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  - Algorithm: Linear interpolation between flanking markers shared between source and 

consensus maps (Arcade et al., 2004).   

  - Output: Adjusted peak positions and CIs on the consensus map.   

 5. Meta-QTL Analysis   

- Select chromosome and trait (e.g., "RootDepth_Chr5B").   

- Tools → Meta-QTL Analysis → Configure:   

 

 InfoMap analysis 

  - Model: Fixed-effects (assumes homogeneous genetic effects) or random-effects (accounts 

for between-study heterogeneity).   

  - Selection criterion: BIC (preferred for large datasets to avoid overfitting).   

  - Model search: Evaluates 1 to k MQTLs per chromosome.   

- Execute:   

  - BioMercator identifies the optimal MQTL number minimizing BIC.   

  - Output includes:   

    - MQTL positions and 95% CIs.   

    - Goodness-of-fit statistics (R²).   
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    - List of contributing QTLs.   

 

InfoMap analysis 

 6. Visualization & Validation   

- Graphical output:   

  - View → Map Viewer displays:   

    - Consensus map (horizontal axis).   
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ConsMap Analysis 

    - Projected QTLs (color-coded bars).   

    - MQTLs (triangles with confidence intervals).   

  - Export as SVG/PDF for publications.   

 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 242 - 
 

 

QTLProj analysis 

- Biological interpretation:   

  - Prioritize MQTLs with:   

    - Narrow CI (<5 cM).   

    - High LOD support (average LOD >10).   

    - Overlap with candidate genes (e.g., via EnsemblPlants).   
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Meta analysis - Visualisation 

- Validation:   

  - Compare MQTLs with independent GWAS peaks or expression QTLs (eQTLs).   

  - Example: A wheat MQTL for grain yield (Chr3A) co-localized with TaGS5 gene validated 

by CRISPR (Liu et al., 2022).   

 

 Troubleshooting Common Issues   

- QTL projection failure:   

  - Cause: Flanking markers absent in consensus map.   

  - Fix: Add missing markers or exclude the QTL.   

- High stress in consensus map:   

  - Cause: Marker order conflicts between maps.   

  - Fix: Re-order markers using recombination data or exclude problematic maps.   

- Overfitting in MQTL model:   

  - Cause: Too many MQTLs selected by AIC.   

  - Fix: Switch to BIC criterion.   
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Software Access: BioMercator 4.2.3 is freely available at [Moulon 

INRAE](http://moulon.inrae.fr/biomercator/). Always consult the official manual for runtime 

parameters and dataset limitations. 
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